-
Notifications
You must be signed in to change notification settings - Fork 2
/
cosmocalc.py
261 lines (221 loc) · 8.02 KB
/
cosmocalc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
"""
This distribution of cosmocalc is for running the Illustris Virtual Observatory/sunpy module by Paul Torrey, Greg Snyder, and Tyler Metivier
Calculate useful values for a given cosmology. This module uses code adapted
from `CC.py`_ (`James Schombert`_) which is a Python version of the
`Cosmology Calculator`_ (`Ned Wright`_).
The following values are calculated:
==== =================================== ===========
Name Value Units
==== =================================== ===========
z Input redshift
H0 Hubble constant
WR Omega(radiation)
WK Omega curvaturve = 1-Omega(total)
WM Omega matter
WV Omega vacuum
DTT Time from z to now Gyr
age Age of Universe Gyr
zage Age of Universe at redshift z Gyr
DCMR Comoving radial distance Gyr Mpc cm
VCM Comoving volume within redshift Gpc3
DA Angular size distance Gyr Mpc cm
DL Luminosity distance Gyr Mpc cm
PS Plate scale - distance per arcsec kpc cm
==== =================================== ===========
.. _`James Schombert`: http://abyss.uoregon.edu/~js/
.. _`CC.py`: http://www.astro.ucla.edu/~wright/CC.python
.. _`Ned Wright`: http://www.astro.ucla.edu/~wright/intro.html
.. _`Cosmology Calculator`: http://www.astro.ucla.edu/~wright/CosmoCalc.html
:Copyright: Smithsonian Astrophysical Observatory (2009)
:Author: Tom Aldcroft ([email protected])
"""
import math
# Define a few constants
cm_per_pc = 3.0856775813057289536e+18
c = 299792.458 # velocity of light in km/sec
km_per_ly = 3600*24*365.25*c # km per light-year
Tyr = 977.8 # coefficent for converting 1/H into Gyr
arcsec_per_rad = 206264.806
_outvals_str = ('z H0 WM WV WK WR',
'DA DA_Gyr DA_Mpc DA_cm',
'DL DL_Gyr DL_Mpc DL_cm',
'DCMR DCMR_Gyr DCMR_Mpc DCMR_cm',
'PS_kpc PS_cm',
'DTT DTT_Gyr',
'VCM VCM_Gpc3',
'age age_Gyr',
'zage zage_Gyr',)
_outvals = (' '.join(_outvals_str)).split()
def cosmocalc(z, H0=71, WM=0.27, WV=None):
"""
Calculate useful values for the supplied cosmology.
This routine returns a dictionary of values in the form ``<name>: <value>``,
where the values are supplied in "natural" units for cosmology, e.g. 1/H0.
In addition various useful unit conversions are done and stored in the
dictionary as ``<name>_<unit>: <value>``. E.g. angular size distance::
'DA': 0.38250549415474988,
'DA_Gyr': 5.2678010166833023,
'DA_Mpc': 1615.1022857909447,
'DA_cm': 4.9836849147807571e+27
Example::
>>> from cosmocalc import cosmocalc
>>> from pprint import pprint
>>> pprint(cosmocalc(3, H0=75, WM=.25))
{'DA': 0.39103776375786625,
'DA_Gyr': 5.0980896720325548,
'DA_Mpc': 1563.0689649039205,
'DA_cm': 4.8231268630387788e+27,
'DCMR': 1.564151055031465,
'DCMR_Gyr': 20.392358688130219,
'DCMR_Mpc': 6252.2758596156818,
'DCMR_cm': 1.9292507452155115e+28,
'DL': 6.25660422012586,
'DL_Gyr': 81.569434752520877,
'DL_Mpc': 25009.103438462727,
'DL_cm': 7.717002980862046e+28,
'DTT': 0.84826379084317027,
'DTT_Gyr': 11.059097795819358,
'H0': 75,
'PS_cm': 2.3383178917293232e+22,
'PS_kpc': 7.5779721961095019,
'VCM': 1.2756009121294902,
'VCM_Gpc3': 1023.7714254161302,
'WK': 0.0,
'WM': 0.25,
'WR': 7.4044444444444448e-05,
'WV': 0.74992595555555552,
'age': 1.0133755371756261,
'age_Gyr': 13.211714670004362,
'z': 3,
'zage': 0.16511174633245579,
'zage_Gyr': 2.1526168741850036}
:param z: redshift
:param H0: Hubble constant (default = 71)
:param WM: Omega matter (default = 0.27)
:param WV: Omega vacuum (default = 1.0 - WM - 0.4165/(H0*H0))
:rtype: dictionary of cosmology values (name_unit = value)
"""
if z > 100:
z = z / 299792.458 # Values over 100 are in km/s
if WV is None:
WV = 1.0 - WM - 0.4165/(H0*H0) # Omega(vacuum) or lambda
age = 0.0 # age of Universe in units of 1/H0
h = H0 / 100.
WR = 4.165E-5 / (h*h) # includes 3 massless neutrino species, T0 = 2.72528
WK = 1 - WM - WR - WV
az = 1.0 / (1 + 1.0*z)
n=1000 # number of points in integrals
for i in range(n):
a = az * (i + 0.5) / n
adot = math.sqrt(WK + (WM/a) + (WR/(a*a)) + (WV*a*a))
age = age + 1./adot
zage = az * age / n
DTT = 0.0
DCMR = 0.0
# do integral over a=1/(1+z) from az to 1 in n steps, midpoint rule
for i in range(n):
a = az + (1-az) * (i+0.5) / n
adot = math.sqrt(WK + (WM/a) + (WR/(a*a)) + (WV*a*a))
DTT = DTT + 1./adot
DCMR = DCMR + 1./(a*adot)
DTT = (1.-az) * DTT / n
DCMR = (1.-az) * DCMR / n
age = DTT + zage
# tangential comoving distance
ratio = 1.0
x = math.sqrt(abs(WK)) * DCMR
if x > 0.1:
if WK > 0:
ratio = 0.5 * (math.exp(x) - math.exp(-x)) / x
else:
ratio = math.math.sin(x) / x
else:
y = x * x
if WK < 0:
y = -y
ratio = 1. + y/6. + y*y/120.
DCMT = ratio * DCMR
# comoving volume computation
ratio = 1.00
x = math.sqrt(abs(WK)) * DCMR
if x > 0.1:
if WK > 0:
ratio = (0.125 * (math.exp(2.*x) - math.exp(-2.*x)) - x/2.) / (x**3 / 3.)
else:
ratio = (x/2. - math.sin(2.*x)/4.)/(x**3 / 3.)
else:
y = x * x
if WK < 0: y = -y
ratio = 1. + y/5. + (2./105.)*y*y
VCM = ratio * DCMR**3 / 3.
VCM_Gpc3 = 4. * math.pi * (0.001*c/H0)**3 * VCM
DA = az * DCMT
DL = DA / (az*az)
# Now convert to some more useful units
Gyr = lambda x: Tyr / H0 * x
Mpc = lambda x: c / H0 * x
cm = lambda x: Mpc(x) * 1e6 * cm_per_pc
DA_Gyr = Gyr(DA)
DA_Mpc = Mpc(DA)
DA_cm = cm(DA)
DL_Gyr = Gyr(DL)
DL_Mpc = Mpc(DL)
DL_cm = cm(DL)
DCMR_Gyr = Gyr(DCMR)
DCMR_Mpc = Mpc(DCMR)
DCMR_cm = cm(DCMR)
DTT_Gyr = Gyr(DTT)
age_Gyr = Gyr(age)
zage_Gyr = Gyr(zage)
PS_kpc = Mpc(DA) * 1000 / arcsec_per_rad
PS_cm = PS_kpc * cm_per_pc * 1000
localvals = locals()
return dict((x, localvals[x]) for x in _outvals)
def get_options():
"""
cosmocalc.py [options] redshift [name_unit [name_unit2 ...]]
Allowed ``name_unit`` values::
DA DA_Gyr DA_Mpc DA_cm
DL DL_Gyr DL_Mpc DL_cm
DCMR DCMR_Gyr DCMR_Mpc DCMR_cm
PS_kpc PS_cm
DTT DTT_Gyr
VCM VCM_Gpc3
age age_Gyr
zage zage_Gyr
H0 WM WV WK WR z
If no ``name_unit`` values are supplied then all the above will be printed."""
from optparse import OptionParser
parser = OptionParser(get_options.__doc__)
parser.set_defaults()
parser.add_option("--H0",
default=None,
type='float',
help="Hubble constant")
parser.add_option("--WM",
default=None,
type='float',
help="")
parser.add_option("--WV",
default=None,
type='float',
help="")
opt, args = parser.parse_args()
return opt, args, parser
def main():
opt, args, parser = get_options()
if len(args) < 1:
parser.error('Need a redshift')
kwargs = dict((key, val) for (key, val) in list(opt.__dict__.items()) if val is not None)
z = float(args[0])
cc = cosmocalc(z, **kwargs)
try:
outlines = []
for outkey in (args[1:] or _outvals):
outlines.append(outkey + ' = ' + str(cc[outkey]))
print('\n'.join(outlines))
except KeyError:
parser.error(outkey + ' is not a valid output name_unit')
if __name__ == '__main__':
main()