-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex-2.58.scm
80 lines (69 loc) · 2.11 KB
/
ex-2.58.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
(load "./util.scm")
;; 2.58a
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
(else
(error "unknown expression type -- DERIV" exp))))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (sum? x)
(and (pair? x) (eq? (cadr x) '+)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list a1 '+ a2))))
(define (addend s) (car s))
(define (augend s) (caddr s))
(define (product? x)
(and (pair? x) (eq? (cadr x) '*)))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list m1 '* m2))))
(define (multiplier s) (car s))
(define (multiplicand s) (caddr s))
; (print (deriv '(x * 3 * 7) 'x))
; (print (deriv '(x + 3) 'x))
; (print (deriv '(x * y) 'x))
; (print (deriv '((x * y) * (x + 3)) 'x))
;; 2.58b
(define (sum? x)
(cond ((null? x) #f)
((eq? '+ (car x)) #t)
(else (sum? (cdr x)))))
(define (addend s)
(if (null? (cdr (addend-m s)))
(car (addend-m s))
(addend-m s)))
(define (addend-m s)
(if (eq? '+ (car s))
'()
(cons (car s) (addend-m (cdr s)))))
(define (augend s)
(if (null? (cdr (augend-m s)))
(car (augend-m s))
(augend-m s)))
(define (augend-m s)
(if (eq? '+ (car s))
(cdr s)
(augend-m (cdr s))))
; (print (deriv '(3 + x) 'x))
; (print (deriv '(x * y * x) 'x))
(print (deriv '(x + 3 * (x + y + 2)) 'x))