forked from anuragranj/spynet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
donkey.lua
executable file
·412 lines (332 loc) · 13 KB
/
donkey.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
-- Copyright 2016 Anurag Ranjan and the Max Planck Gesellschaft.
-- All rights reserved.
-- This software is provided for research purposes only.
-- By using this software you agree to the terms of the license file
-- in the root folder.
-- For commercial use, please contact [email protected].
require 'image'
require 'nn'
require 'cunn'
require 'cudnn'
require 'nngraph'
require 'stn'
require 'spy'
local flowX = require 'flowExtensions'
local TF = require 'transforms'
paths.dofile('dataset.lua')
paths.dofile('util.lua')
-- This file contains the data-loading logic and details.
-- It is run by each data-loader thread.
------------------------------------------
local eps = 1e-6
-- a cache file of the training metadata (if doesnt exist, will be created)
local trainCache = paths.concat(opt.cache, 'trainCache.t7')
local testCache = paths.concat(opt.cache, 'testCache.t7')
local meanstd = {
mean = { 0.485, 0.456, 0.406 },
std = { 0.229, 0.224, 0.225 },
}
local pca = {
eigval = torch.Tensor{ 0.2175, 0.0188, 0.0045 },
eigvec = torch.Tensor{
{ -0.5675, 0.7192, 0.4009 },
{ -0.5808, -0.0045, -0.8140 },
{ -0.5836, -0.6948, 0.4203 },
},
}
local mean = meanstd.mean
local std = meanstd.std
------------------------------------------
-- Warping Function:
local function createWarpModel()
local imgData = nn.Identity()()
local floData = nn.Identity()()
local imgOut = nn.Transpose({2,3},{3,4})(imgData)
local floOut = nn.Transpose({2,3},{3,4})(floData)
local warpImOut = nn.Transpose({3,4},{2,3})(nn.BilinearSamplerBHWD()({imgOut, floOut}))
local model = nn.gModule({imgData, floData}, {warpImOut})
return model
end
local modelL1, modelL2, modelL3, modelL4
local modelL1path, modelL2path, modelL3path, modelL4path
local down1, down2, down3, down4, up2, up3, up4
local warpmodel2, warpmodel3, warpmodel4
modelL1path = opt.L1
modelL2path = opt.L2
modelL3path = opt.L3
modelL4path = opt.L4
if opt.level > 1 then
-- Load modelL1
modelL1 = torch.load(modelL1path)
if torch.type(modelL1) == 'nn.DataParallelTable' then
modelL1 = modelL1:get(1)
end
modelL1:evaluate()
down1 = nn.SpatialAveragePooling(2,2,2,2):cuda()
down1:evaluate()
end
if opt.level > 2 then
-- Load modelL2
modelL2 = torch.load(modelL2path)
if torch.type(modelL2) == 'nn.DataParallelTable' then
modelL2 = modelL2:get(1)
end
modelL2:evaluate()
down2 = nn.SpatialAveragePooling(2,2,2,2):cuda()
up2 = nn.Sequential():add(nn.Transpose({2,3},{3,4})):add(nn.ScaleBHWD(2)):add(nn.Transpose({3,4},{2,3})):cuda()
warpmodel2 = createWarpModel():cuda()
down2:evaluate()
up2:evaluate()
warpmodel2:evaluate()
end
if opt.level > 3 then
-- Load modelL3
modelL3 = torch.load(modelL3path)
if torch.type(modelL3) == 'nn.DataParallelTable' then
modelL3 = modelL3:get(1)
end
modelL3:evaluate()
down3 = nn.SpatialAveragePooling(2,2,2,2):cuda()
up3 = nn.Sequential():add(nn.Transpose({2,3},{3,4})):add(nn.ScaleBHWD(2)):add(nn.Transpose({3,4},{2,3})):cuda()
warpmodel3 = createWarpModel():cuda()
down3:evaluate()
up3:evaluate()
warpmodel3:evaluate()
end
if opt.level > 4 then
-- Load modelL4
modelL4 = torch.load(modelL4path)
if torch.type(modelL4) == 'nn.DataParallelTable' then
modelL4 = modelL4:get(1)
end
modelL4:evaluate()
down4 = nn.SpatialAveragePooling(2,2,2,2):cuda()
up4 = nn.Sequential():add(nn.Transpose({2,3},{3,4})):add(nn.ScaleBHWD(2)):add(nn.Transpose({3,4},{2,3})):cuda()
warpmodel4 = createWarpModel():cuda()
down4:evaluate()
up4:evaluate()
warpmodel4:evaluate()
end
-- Check for existence of opt.data
if not os.execute('cd ' .. opt.data) then
error(("could not chdir to '%s'"):format(opt.data))
end
local loadSize = opt.loadSize
local inputSize = {8, opt.fineHeight, opt.fineWidth}
local outputSize = {2, opt.fineHeight, opt.fineWidth}
local function getTrainValidationSplits(path)
local numSamples = sys.fexecute( "ls " .. opt.data .. "| wc -l")/3
local ff = torch.DiskFile(path, 'r')
local trainValidationSamples = torch.IntTensor(numSamples)
ff:readInt(trainValidationSamples:storage())
ff:close()
local train_samples = trainValidationSamples:eq(1):nonzero()
local validation_samples = trainValidationSamples:eq(2):nonzero()
return train_samples, validation_samples
end
local train_samples, validation_samples = getTrainValidationSplits(opt.trainValidationSplit)
local function loadImage(path)
local input = image.load(path, 3, 'float')
return input
end
local function rotateFlow(flow, angle)
local flow_rot = image.rotate(flow, angle)
local fu = torch.mul(flow_rot[1], math.cos(-angle)) - torch.mul(flow_rot[2], math.sin(-angle))
local fv = torch.mul(flow_rot[1], math.sin(-angle)) + torch.mul(flow_rot[2], math.cos(-angle))
flow_rot[1]:copy(fu)
flow_rot[2]:copy(fv)
return flow_rot
end
local function scaleFlow(flow, height, width)
-- scale the original flow to a flow of size height x width
local sc = height/flow:size(2)
assert(torch.abs(width/flow:size(3) - sc)<eps, 'Aspect ratio of output flow is not the same as input flow' )
local flow_scaled = image.scale(flow, width, height)*sc
return flow_scaled
end
local function computeInitFlowL1(imagesL1)
local h = imagesL1:size(3)
local w = imagesL1:size(4)
local batchSize = imagesL1:size(1)
local _flowappend = torch.zeros(batchSize, 2, h, w):cuda()
local images_in = torch.cat(imagesL1, _flowappend, 2)
local flow_est = modelL1:forward(images_in)
return flow_est
end
local function computeInitFlowL2(imagesL2)
local imagesL1 = down2:forward(imagesL2:clone())
local _flowappend = up2:forward(computeInitFlowL1(imagesL1))*2
local _img2 = imagesL2[{{},{4,6},{},{}}]
imagesL2[{{},{4,6},{},{}}]:copy(warpmodel2:forward({_img2, _flowappend}))
local images_in = torch.cat(imagesL2, _flowappend, 2)
local flow_est = modelL2:forward(images_in)
return flow_est:add(_flowappend)
end
local function computeInitFlowL3(imagesL3)
local imagesL2 = down3:forward(imagesL3:clone())
local _flowappend = up3:forward(computeInitFlowL2(imagesL2))*2
local _img2 = imagesL3[{{},{4,6},{},{}}]
imagesL3[{{},{4,6},{},{}}]:copy(warpmodel3:forward({_img2, _flowappend}))
local images_in = torch.cat(imagesL3, _flowappend, 2)
local flow_est = modelL3:forward(images_in)
return flow_est:add(_flowappend)
end
local function computeInitFlowL4(imagesL4)
local imagesL3 = down4:forward(imagesL4)
local _flowappend = up4:forward(computeInitFlowL3(imagesL3))*2
local _img2 = imagesL4[{{},{4,6},{},{}}]
imagesL4[{{},{4,6},{},{}}]:copy(warpmodel4:forward({_img2, _flowappend}))
local images_in = torch.cat(imagesL4, _flowappend, 2)
local flow_est = modelL4:forward(images_in)
return flow_est:add(_flowappend)
end
local function makeData(images, flows)
local initFlow, flowDiffOutput
local images_scaled = image.scale(images, opt.fineWidth, opt.fineHeight)
if opt.level == 1 then
initFlow = torch.zeros(2, opt.fineHeight, opt.fineWidth)
flowDiffOutput = scaleFlow(flows, opt.fineHeight, opt.fineWidth)
elseif opt.level == 2 then
local coarseImages = image.scale(images, opt.fineWidth/2, opt.fineHeight/2)
initFlow = computeInitFlowL1(coarseImages:resize(1,coarseImages:size(1),
coarseImages:size(2), coarseImages:size(3)):cuda())
initFlow = scaleFlow(initFlow:squeeze():float(), opt.fineHeight, opt.fineWidth)
flowDiffOutput = scaleFlow(flows, opt.fineHeight, opt.fineWidth)
flowDiffOutput = flowDiffOutput:add(flowDiffOutput, -1, initFlow)
elseif opt.level == 3 then
local coarseImages = image.scale(images, opt.fineWidth/2, opt.fineHeight/2)
initFlow = computeInitFlowL1(coarseImages:resize(1,coarseImages:size(1),
coarseImages:size(2), coarseImages:size(3)):cuda())
initFlow = scaleFlow(initFlow:squeeze():float(), opt.fineHeight, opt.fineWidth)
flowDiffOutput = scaleFlow(flows, opt.fineHeight, opt.fineWidth)
flowDiffOutput = flowDiffOutput:add(flowDiffOutput, -1, initFlow)
elseif opt.level == 4 then
local coarseImages = image.scale(images, opt.fineWidth/2, opt.fineHeight/2)
initFlow = computeInitFlowL1(coarseImages:resize(1,coarseImages:size(1),
coarseImages:size(2), coarseImages:size(3)):cuda())
initFlow = scaleFlow(initFlow:squeeze():float(), opt.fineHeight, opt.fineWidth)
flowDiffOutput = scaleFlow(flows, opt.fineHeight, opt.fineWidth)
flowDiffOutput = flowDiffOutput:add(flowDiffOutput, -1, initFlow)
elseif opt.level == 5 then
local coarseImages = image.scale(images, opt.fineWidth/2, opt.fineHeight/2)
initFlow = computeInitFlowL1(coarseImages:resize(1,coarseImages:size(1),
coarseImages:size(2), coarseImages:size(3)):cuda())
initFlow = scaleFlow(initFlow:squeeze():float(), opt.fineHeight, opt.fineWidth)
flowDiffOutput = scaleFlow(flows, opt.fineHeight, opt.fineWidth)
flowDiffOutput = flowDiffOutput:add(flowDiffOutput, -1, initFlow)
end
local _img2 = images_scaled[{{4,6},{},{}}]:clone()
images_scaled[{{4,6},{},{}}]:copy(image.warp(_img2, initFlow:index(1, torch.LongTensor{2,1})))
local imageFlowInputs = torch.cat(images_scaled, initFlow:float(), 1)
return imageFlowInputs, flowDiffOutput
end
local function Preprocess()
return TF.Compose{
TF.ColorJitter({
brightness = 0.4,
contrast = 0.4,
saturation = 0.4,
}),
TF.Lighting(0.1, pca.eigval, pca.eigvec),
TF.ColorNormalize(meanstd),
}
end
-- function to load the image, jitter it appropriately (random crops etc.)
local trainHook = function(self, id)
collectgarbage()
local path1 = paths.concat(opt.data, (string.format("%05i", id) .."_img1.ppm"))
local path2 = paths.concat(opt.data, (string.format("%05i", id) .."_img2.ppm"))
local img1 = loadImage(path1)
local img2 = loadImage(path2)
local images = torch.cat(img1, img2, 1)
local pathF = paths.concat(opt.data, (string.format("%05i", id) .."_flow.flo"))
local flow = flowX.loadFLO(pathF)
local imagesOut, flowOut
if opt.augment == 1 then
-- Rotation [-0.3 0.3] in radians
local ang = torch.uniform()*0.6 - 0.3
images = image.rotate(images, ang)
flow = rotateFlow(flow, ang)
-- Add Random Scale
local sc = math.floor(torch.uniform(1e-2, 15))
sc = 30/(sc+15)
local imagesIn = image.scale(images, '*'..sc)
local flowIn = image.scale(flow, '*'..sc)*sc -- Notice the scaling of flow here
-- Add Random Noise to the images
imagesIn = imagesIn:add(torch.rand(imagesIn:size()):mul(0.1):float())
-- do random crop
local iW = imagesIn:size(3)
local iH = imagesIn:size(2)
local oW = loadSize[3]
local oH = loadSize[2]
local h1 = math.floor(torch.uniform(1e-2, iH-oH))
local w1 = math.floor(torch.uniform(1e-2, iW-oW))
imagesOut = image.crop(imagesIn, w1, h1, w1 + oW, h1 + oH)
flowOut = image.crop(flowIn, w1, h1, w1 + oW, h1 + oH)
assert(imagesOut:size(3) == oW)
assert(imagesOut:size(2) == oH)
assert(flowOut:size(3) == oW)
assert(flowOut:size(2) == oH)
-- Augmentation and Contrast Normalization
imagesOut = Preprocess()(imagesOut)
else
imagesOut = TF.ColorNormalize(meanstd)(images)
flowOut = flow
end
return makeData(imagesOut, flowOut)
end
if paths.filep(trainCache) then
print('Loading train metadata from cache')
trainLoader = torch.load(trainCache)
trainLoader.sampleHookTrain = trainHook
else
print('Creating train metadata')
trainLoader = dataLoader{
loadSize = loadSize,
inputSize = inputSize,
outputSize = outputSize,
split = 100,
samplingIds = train_samples,
verbose = true
}
torch.save(trainCache, trainLoader)
trainLoader.sampleHookTrain = trainHook
end
collectgarbage()
-- End of train loader section
--------------------------------------------------------------------------------
--[[
Section 2: Create a test data loader (testLoader),
which can iterate over the test set and returns an image's
--]]
local testHook = function(self, id)
collectgarbage()
local path1 = paths.concat(opt.data, (string.format("%05i", id) .."_img1.ppm"))
local path2 = paths.concat(opt.data, (string.format("%05i", id) .."_img2.ppm"))
local img1 = loadImage(path1)
local img2 = loadImage(path2)
local images = torch.cat(img1, img2, 1)
local pathF = paths.concat(opt.data, (string.format("%05i", id) .."_flow.flo"))
local flow = flowX.loadFLO(pathF)
images = TF.ColorNormalize(meanstd)(images)
return makeData(images, flow)
end
if paths.filep(testCache) then
print('Loading test metadata from cache')
testLoader = torch.load(testCache)
testLoader.sampleHookTest = testHook
else
print('Creating test metadata')
testLoader = dataLoader{
loadSize = loadSize,
inputSize = inputSize,
outputSize = outputSize,
split = 0,
samplingIds = validation_samples,
verbose = true
}
torch.save(testCache, testLoader)
testLoader.sampleHookTest = testHook
end
collectgarbage()
-- End of test loader section