forked from anuragranj/spynet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.lua
executable file
·84 lines (69 loc) · 2.63 KB
/
test.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
-- Copyright 2016 Anurag Ranjan and the Max Planck Gesellschaft.
-- All rights reserved.
-- This software is provided for research purposes only.
-- By using this software you agree to the terms of the license file
-- in the root folder.
-- For commercial use, please contact [email protected].
--
-- Copyright (c) 2014, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
testLogger = optim.Logger(paths.concat(opt.save, 'test.log'))
local batchNumber
local error_center, loss
local timer = torch.Timer()
function test()
print('==> doing epoch on validation data:')
print("==> online epoch # " .. epoch)
batchNumber = 0
cutorch.synchronize()
timer:reset()
-- set the dropouts to evaluate mode
model:evaluate()
error_center = 0
loss = 0
for i=1,nTest/opt.batchSize do -- nTest is set in 1_data.lua
local indexStart = (i-1) * opt.batchSize + 1
local indexEnd = (indexStart + opt.batchSize - 1)
donkeys:addjob(
-- work to be done by donkey thread
function()
local inputs, labels = testLoader:get(indexStart, indexEnd)
return inputs, labels
end,
-- callback that is run in the main thread once the work is done
testBatch
)
end
donkeys:synchronize()
cutorch.synchronize()
error_center = error_center * 100 / nTest
loss = loss / (nTest/opt.batchSize) -- because loss is calculated per batch
testLogger:add{
['% top1 accuracy (test set) (center crop)'] = error_center,
['avg loss (test set)'] = loss
}
print(string.format('Epoch: [%d][TESTING SUMMARY] Total Time(s): %.2f \t'
.. 'average loss (per batch): %.2f \t '
.. 'accuracy [Center](%%):\t top-1 %.2f\t ',
epoch, timer:time().real, loss, error_center))
print('\n')
end -- of test()
-----------------------------------------------------------------------------
local inputs = torch.CudaTensor()
local labels = torch.CudaTensor()
function testBatch(inputsCPU, labelsCPU)
batchNumber = batchNumber + opt.batchSize
inputs:resize(inputsCPU:size()):copy(inputsCPU)
labels:resize(labelsCPU:size()):copy(labelsCPU)
local outputs = model:forward(inputs)
local err = criterion:forward(outputs, labels)
cutorch.synchronize()
local pred = outputs:float()
loss = loss + err
print(('Epoch: Testing [%d][%d/%d]'):format(epoch, batchNumber, nTest))
end