forked from anuragranj/spynet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.lua
executable file
·193 lines (168 loc) · 6.1 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
-- Copyright 2016 Anurag Ranjan and the Max Planck Gesellschaft.
-- All rights reserved.
-- This software is provided for research purposes only.
-- By using this software you agree to the terms of the license file
-- in the root folder.
-- For commercial use, please contact [email protected].
--
-- Copyright (c) 2014, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
require 'optim'
--[[
1. Setup SGD optimization state and learning rate schedule
2. Create loggers.
3. train - this function handles the high-level training loop,
i.e. load data, train model, save model and state to disk
4. trainBatch - Used by train() to train a single batch after the data is loaded.
]]--
-- Setup a reused optimization state (for sgd). If needed, reload it from disk
local optimState = {
learningRate = opt.LR,
learningRateDecay = 0.0,
momentum = opt.momentum,
dampening = 0.0,
weightDecay = opt.weightDecay
}
if opt.optimState ~= 'none' then
assert(paths.filep(opt.optimState), 'File not found: ' .. opt.optimState)
print('Loading optimState from file: ' .. opt.optimState)
optimState = torch.load(opt.optimState)
end
-- Learning rate annealing schedule. We will build a new optimizer for
-- each epoch.
--
-- By default we follow a known recipe for a 55-epoch training. If
-- the learningRate command-line parameter has been specified, though,
-- we trust the user is doing something manual, and will use her
-- exact settings for all optimization.
--
-- Return values:
-- diff to apply to optimState,
-- true IFF this is the first epoch of a new regime
local function paramsForEpoch(epoch)
if opt.LR ~= 0.0 then -- if manually specified
return { }
end
local regimes = {
-- start, end, LR, WD,
{ 1, 10, 5e-3, 0 },
{ 11, 80, 1e-4, 0 },
{ 81, 120, 1e-4, 0 },
{ 121, 160, 1e-4, 0 },
{ 161, 1e8, 5e-5, 0 },
}
for _, row in ipairs(regimes) do
if epoch >= row[1] and epoch <= row[2] then
return { learningRate=row[3], weightDecay=row[4] }, epoch == row[1]
end
end
end
-- 2. Create loggers.
trainLogger = optim.Logger(paths.concat(opt.save, 'train.log'))
local batchNumber
local top1_epoch, loss_epoch
-- 3. train - this function handles the high-level training loop,
-- i.e. load data, train model, save model and state to disk
function train()
print('==> doing epoch on training data:')
print("==> online epoch # " .. epoch)
local params, newRegime = paramsForEpoch(epoch)
if newRegime then
optimState = {
learningRate = params.learningRate,
learningRateDecay = 0.0,
momentum = opt.momentum,
dampening = 0.0,
weightDecay = params.weightDecay
}
end
batchNumber = 0
cutorch.synchronize()
-- set the dropouts to training mode
model:training()
local tm = torch.Timer()
top1_epoch = 0
loss_epoch = 0
for i=1,opt.epochSize do
-- queue jobs to data-workers
donkeys:addjob(
-- the job callback (runs in data-worker thread)
function()
local inputs, labels = trainLoader:sample(opt.batchSize)
return inputs, labels
end,
-- the end callback (runs in the main thread)
trainBatch
)
end
donkeys:synchronize()
cutorch.synchronize()
top1_epoch = top1_epoch * 100 / (opt.batchSize * opt.epochSize)
loss_epoch = loss_epoch / opt.epochSize
trainLogger:add{
['% top1 accuracy (train set)'] = top1_epoch,
['avg loss (train set)'] = loss_epoch
}
print(string.format('Epoch: [%d][TRAINING SUMMARY] Total Time(s): %.2f\t'
.. 'average loss (per batch): %.2f \t '
.. 'accuracy(%%):\t top-1 %.2f\t',
epoch, tm:time().real, loss_epoch, top1_epoch))
print('\n')
-- save model
collectgarbage()
-- clear the intermediate states in the model before saving to disk
-- this saves lots of disk space
model:clearState()
saveDataParallel(paths.concat(opt.save, 'model_' .. epoch .. '.t7'), model) -- defined in util.lua
torch.save(paths.concat(opt.save, 'optimState_' .. epoch .. '.t7'), optimState)
end -- of train()
-------------------------------------------------------------------------------------------
-- GPU inputs (preallocate)
local inputs = torch.CudaTensor()
local labels = torch.CudaTensor()
local timer = torch.Timer()
local dataTimer = torch.Timer()
local parameters, gradParameters = model:getParameters()
-- 4. trainBatch - Used by train() to train a single batch after the data is loaded.
function trainBatch(inputsCPU, labelsCPU)
cutorch.synchronize()
collectgarbage()
local dataLoadingTime = dataTimer:time().real
timer:reset()
-- transfer over to GPU
inputs:resize(inputsCPU:size()):copy(inputsCPU)
labels:resize(labelsCPU:size()):copy(labelsCPU)
local err, outputs
feval = function(x)
model:zeroGradParameters()
outputs = model:forward(inputs)
err = criterion:forward(outputs, labels)
local gradOutputs = criterion:backward(outputs, labels)
model:backward(inputs, gradOutputs)
return err, gradParameters
end
if opt.optimizer == 'adam' then
optim.adam(feval, parameters, optimState)
elseif opt.optimizer == 'sgd' then
optim.sgd(feval, parameters, optimState)
else
error("Specify Optimizer")
end
-- DataParallelTable's syncParameters
if model.needsSync then
model:syncParameters()
end
cutorch.synchronize()
batchNumber = batchNumber + 1
loss_epoch = loss_epoch + err
-- Calculate top-1 error, and print information
print(('Epoch: [%d][%d/%d]\tTime %.3f Err %.4f LR %.0e DataLoadingTime %.3f'):format(
epoch, batchNumber, opt.epochSize, timer:time().real, err,
optimState.learningRate, dataLoadingTime))
dataTimer:reset()
end