forked from miladmozafari/SpykeTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MozafariShallow.py
269 lines (235 loc) · 9.96 KB
/
MozafariShallow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
##########################################################################
# Reimplementation of the Object Recognition Experiments Performed in: #
# https://ieeexplore.ieee.org/document/8356226/ #
# #
# Reference: #
# Mozafari, Milad, et al., #
# "First-Spike-Based Visual Categorization Using Reward-Modulated STDP.",#
# IEEE Transactions on Neural Networks and Learning Systems (2018). #
# #
# Original Implementation (in C#): #
# https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=240369 #
##########################################################################
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
import numpy as np
from SpykeTorch import snn
from SpykeTorch import functional as sf
from SpykeTorch import visualization as vis
from SpykeTorch import utils
from torchvision import transforms
class Mozafari2018(nn.Module):
def __init__(self, input_channels, features_per_class, number_of_classes,
s2_kernel_size, threshold, stdp_lr, anti_stdp_lr, dropout = 0.):
super(Mozafari2018, self).__init__()
self.features_per_class = features_per_class
self.number_of_classes = number_of_classes
self.number_of_features = features_per_class * number_of_classes
self.kernel_size = s2_kernel_size
self.threshold = threshold
self.stdp_lr = stdp_lr
self.anti_stdp_lr = anti_stdp_lr
self.dropout = torch.ones(self.number_of_features) * dropout
self.to_be_dropped = torch.bernoulli(self.dropout).nonzero()
self.s2 = snn.Convolution(input_channels, self.number_of_features, self.kernel_size, 0.8, 0.05)
self.stdp = snn.STDP(self.s2, stdp_lr)
self.anti_stdp = snn.STDP(self.s2, anti_stdp_lr)
self.decision_map = []
for i in range(number_of_classes):
self.decision_map.extend([i]*features_per_class)
self.ctx = {"input_spikes":None, "potentials":None, "output_spikes":None, "winners":None}
def forward(self, input):
pot = self.s2(input)
if self.training and self.dropout[0] > 0:
sf.feature_inhibition_(pot, self.to_be_dropped)
spk, pot = sf.fire(pot, self.threshold, True)
winners = sf.get_k_winners(pot, 1, 0, spk)
output = -1
if len(winners) != 0:
output = self.decision_map[winners[0][0]]
if self.training:
self.ctx["input_spikes"] = input
self.ctx["potentials"] = pot
self.ctx["output_spikes"] = spk
self.ctx["winners"] = winners
else:
self.ctx["input_spikes"] = None
self.ctx["potentials"] = None
self.ctx["output_spikes"] = None
self.ctx["winners"] = None
return output
def update_dropout(self):
self.to_be_dropped = torch.bernoulli(self.dropout).nonzero()
def update_learning_rates(self, stdp_ap, stdp_an, anti_stdp_ap, anti_stdp_an):
self.stdp.update_all_learning_rate(stdp_ap, stdp_an)
self.anti_stdp.update_all_learning_rate(anti_stdp_an, anti_stdp_ap)
def reward(self):
self.stdp(self.ctx["input_spikes"], self.ctx["potentials"], self.ctx["output_spikes"], self.ctx["winners"])
def punish(self):
self.anti_stdp(self.ctx["input_spikes"], self.ctx["potentials"], self.ctx["output_spikes"], self.ctx["winners"])
class S1C1Transform:
def __init__(self, filter, pooling_size, pooling_stride, lateral_inhibition = None, timesteps = 15,
feature_wise_inhibition=True):
self.grayscale = transforms.Grayscale()
self.to_tensor = transforms.ToTensor()
self.filter = filter
self.pooling_size = pooling_size
self.pooling_stride = pooling_stride
self.lateral_inhibition = lateral_inhibition
self.temporal_transform = utils.Intensity2Latency(timesteps)
self.feature_wise_inhibition = feature_wise_inhibition
def __call__(self, image):
image = self.to_tensor(self.grayscale(image))
image.unsqueeze_(0)
image = self.filter(image)
image = sf.pooling(image, self.pooling_size, self.pooling_stride, padding=self.pooling_size//2)
if self.lateral_inhibition is not None:
image = self.lateral_inhibition(image)
temporal_image = self.temporal_transform(image)
temporal_image = sf.pointwise_inhibition(temporal_image)
return temporal_image.sign()
kernels = [ utils.GaborKernel(5, 45+22.5),
utils.GaborKernel(5, 90+22.5),
utils.GaborKernel(5, 135+22.5),
utils.GaborKernel(5, 180+22.5)]
filter = utils.Filter(kernels, use_abs = True)
lateral_inhibition = utils.LateralIntencityInhibition([0.15, 0.12, 0.1, 0.07, 0.05])
task = "Caltech"
use_cuda = True
if task == "Caltech":
s1c1 = S1C1Transform(filter, 7, 6, lateral_inhibition)
trainsetfolder = utils.CacheDataset(ImageFolder("facemotortrain", s1c1))
testsetfolder = utils.CacheDataset(ImageFolder("facemotortest", s1c1))
mozafari = Mozafari2018(4, 10, 2, (17,17), 42, (0.005, -0.0025), (-0.005, 0.0005), 0.5)
trainset = DataLoader(trainsetfolder, batch_size = len(trainsetfolder), shuffle = True)
testset = DataLoader(testsetfolder, batch_size = len(testsetfolder), shuffle = True)
max_epoch = 400
elif task == "ETH":
s1c1 = S1C1Transform(filter, 5, 4, lateral_inhibition)
mozafari = Mozafari2018(4, 10, 8, (31,31), 160, (0.01, -0.0035), (-0.01, 0.0006), 0.4)
def target_transform(target):
return target//10
datafolder = utils.CacheDataset(ImageFolder("eth80-cropped-close128", s1c1, target_transform=target_transform))
test_instances = np.random.randint(0, 10, 8)
train_indices = set(range(len(datafolder)))
test_indices = set()
for c in range(8):
for i in range(41):
test_indices.add(c * 410 + test_instances[c] * 41 + i)
train_indices -= test_indices
train_indices = list(train_indices)
test_indices = list(test_indices)
trainset = DataLoader(datafolder, batch_size = 8 * 9 * 41, sampler=torch.utils.data.SubsetRandomSampler(train_indices))
testset = DataLoader(datafolder, batch_size = 8 * 1 * 41, sampler=torch.utils.data.SubsetRandomSampler(test_indices))
max_epoch = 250
elif task == "Norb":
s1c1 = S1C1Transform(filter, 5, 4, lateral_inhibition, timesteps=30)
trainsetfolder = utils.CacheDataset(ImageFolder("norb/train", s1c1))
testsetfolder = utils.CacheDataset(ImageFolder("norb/test", s1c1))
mozafari = Mozafari2018(4, 10, 5, (23,23), 150, (0.05, -0.003), (-0.05, 0.0005), 0.5)
trainset = DataLoader(trainsetfolder, batch_size = len(trainsetfolder), shuffle = True)
testset = DataLoader(testsetfolder, batch_size = len(testsetfolder), shuffle = True)
max_epoch = 800
if use_cuda:
mozafari.cuda()
# initial adaptive learning rates
apr = mozafari.stdp_lr[0]
anr = mozafari.stdp_lr[1]
app = mozafari.anti_stdp_lr[1]
anp = mozafari.anti_stdp_lr[0]
adaptive_min = 0.2
adaptive_int = 0.8
apr_adapt = ((1.0 - 1.0 / mozafari.number_of_classes) * adaptive_int + adaptive_min) * apr
anr_adapt = ((1.0 - 1.0 / mozafari.number_of_classes) * adaptive_int + adaptive_min) * anr
app_adapt = ((1.0 / mozafari.number_of_classes) * adaptive_int + adaptive_min) * app
anp_adapt = ((1.0 / mozafari.number_of_classes) * adaptive_int + adaptive_min) * anp
# perf
best_train = np.array([0,0,0,0]) # correct, wrong, silence, epoch
best_test = np.array([0,0,0,0]) # correct, wrong, silence, epoch
# train one batch (here a batch contains all data so it is an epoch)
def train(data, target, network):
network.train()
perf = np.array([0,0,0]) # correct, wrong, silence
network.update_dropout()
for i in range(len(data)):
data_in = data[i]
target_in = target[i]
if use_cuda:
data_in = data_in.cuda()
target_in = target_in.cuda()
d = network(data_in)
if d != -1:
if d == target_in:
perf[0]+=1
network.reward()
else:
perf[1]+=1
network.punish()
else:
perf[2]+=1
return perf/len(data)
# test one batch (here a batch contains all data so it is an epoch)
def test(data, target, network):
network.eval()
perf = np.array([0,0,0]) # correct, wrong, silence
for i in range(len(data)):
data_in = data[i]
target_in = target[i]
if use_cuda:
data_in = data_in.cuda()
target_in = target_in.cuda()
d = network(data_in)
if d != -1:
if d == target_in:
perf[0]+=1
else:
perf[1]+=1
else:
perf[2]+=1
return perf/len(data)
for epoch in range(max_epoch):
print("Epoch #:", epoch)
for data, target in trainset:
perf_train = train(data, target, mozafari)
if best_train[0] <= perf_train[0]:
best_train = np.append(perf_train, epoch)
print("Current Train:", perf_train)
print(" Best Train:", best_train)
for data_test, target_test in testset:
perf_test = test(data_test, target_test, mozafari)
if best_test[0] <= perf_test[0]:
best_test = np.append(perf_test, epoch)
torch.save(mozafari.state_dict(), "saved.net")
print(" Current Test:", perf_test)
print(" Best Test:", best_test)
#update adaptive learning rates
apr_adapt = apr * (perf_train[1] * adaptive_int + adaptive_min)
anr_adapt = anr * (perf_train[1] * adaptive_int + adaptive_min)
app_adapt = app * (perf_train[0] * adaptive_int + adaptive_min)
anp_adapt = anp * (perf_train[0] * adaptive_int + adaptive_min)
mozafari.update_learning_rates(apr_adapt, anr_adapt, app_adapt, anp_adapt)
# Features #
feature = torch.tensor([
[
[1]
]
]).float()
if use_cuda:
feature = feature.cuda()
cstride = (1,1)
# S1 Features #
if use_cuda:
feature,cstride = vis.get_deep_feature(feature, cstride, (filter.max_window_size, filter.max_window_size), (1,1), filter.kernels.cuda())
else:
feature,cstride = vis.get_deep_feature(feature, cstride, (filter.max_window_size, filter.max_window_size), (1,1), filter.kernels)
# C1 Features #
feature,cstride = vis.get_deep_feature(feature, cstride, (s1c1.pooling_size, s1c1.pooling_size), (s1c1.pooling_stride, s1c1.pooling_stride))
# S2 Features #
feature,cstride = vis.get_deep_feature(feature, cstride, mozafari.kernel_size, (1,1), mozafari.s2.weight)
for i in range(mozafari.number_of_features):
vis.plot_tensor_in_image('feature_s2_'+str(i).zfill(4)+'.png',feature[i])