-
Notifications
You must be signed in to change notification settings - Fork 0
/
normsinv.c
62 lines (41 loc) · 1.77 KB
/
normsinv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include <math.h>
//
// Find and return the z value from the area under the curve.
//
double normsinv( double p)
{
// Coefficients in rational approximations
double a[] = {-3.969683028665376e+01, 2.209460984245205e+02,
-2.759285104469687e+02, 1.383577518672690e+02,
-3.066479806614716e+01, 2.506628277459239e+00};
double b[] = {-5.447609879822406e+01, 1.615858368580409e+02,
-1.556989798598866e+02, 6.680131188771972e+01,
-1.328068155288572e+01 };
double c[] = {-7.784894002430293e-03, -3.223964580411365e-01,
-2.400758277161838e+00, -2.549732539343734e+00,
4.374664141464968e+00, 2.938163982698783e+00};
double d[] = {7.784695709041462e-03, 3.224671290700398e-01,
2.445134137142996e+00, 3.754408661907416e+00};
// Define break-points.
double plow = 0.02425;
double phigh = 1 - plow;
// Rational approximation for lower region:
if ( p < plow )
{
double q = sqrt(-2*log(p));
return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
}
// Rational approximation for upper region:
if ( phigh < p )
{
double q = sqrt(-2*log(1-p));
return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
}
// Rational approximation for central region:
double q1 = p - 0.5;
double r = q1*q1;
return (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q1 /
(((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1);
}