-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
63 lines (45 loc) · 1.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import json
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import torch
from PIL import Image
def denormalize(T, coords):
return (0.5 * ((coords + 1.0) * T))
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1, 1).view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def prepare_dirs(config):
for path in [config.ckpt_dir, config.logs_dir]:
if not os.path.exists(path):
os.makedirs(path)
def save_config(config):
model_name = config.save_name
filename = model_name + '_params.json'
param_path = os.path.join(config.ckpt_dir, filename)
print("[*] Model Checkpoint Dir: {}".format(config.ckpt_dir))
print("[*] Param Path: {}".format(param_path))
with open(param_path, 'w') as fp:
json.dump(config.__dict__, fp, indent=4, sort_keys=True)