forked from ashawkey/stable-dreamfusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
470 lines (408 loc) · 15.4 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import numpy as np
import torch
import enum
import itertools
from dataclasses import dataclass
import torch.optim as optim
@torch.no_grad()
def PowerIter(mat_g, error_tolerance=1e-6, num_iters=100):
"""Power iteration.
Compute the maximum eigenvalue of mat, for scaling.
v is a random vector with values in (-1, 1)
Args:
mat_g: the symmetric PSD matrix.
error_tolerance: Iterative exit condition.
num_iters: Number of iterations.
Returns:
eigen vector, eigen value, num_iters
"""
v = torch.rand(list(mat_g.shape)[0], device=mat_g.get_device()) * 2 - 1
error = 1
iters = 0
singular_val = 0
while error > error_tolerance and iters < num_iters:
v = v / torch.norm(v)
mat_v = torch.mv(mat_g, v)
s_v = torch.dot(v, mat_v)
error = torch.abs(s_v - singular_val)
v = mat_v
singular_val = s_v
iters += 1
return singular_val, v / torch.norm(v), iters
@torch.no_grad()
def MatPower(mat_m, p):
"""Computes mat_m^p, for p a positive integer.
Args:
mat_m: a square matrix
p: a positive integer
Returns:
mat_m^p
"""
if p in [1, 2, 4, 8, 16, 32]:
p_done = 1
res = mat_m
while p_done < p:
res = torch.matmul(res, res)
p_done *= 2
return res
power = None
while p > 0:
if p % 2 == 1:
power = torch.matmul(mat_m, power) if power is not None else mat_m
p //= 2
mat_m = torch.matmul(mat_m, mat_m)
return power
@torch.no_grad()
def ComputePower(mat_g, p,
iter_count=100,
error_tolerance=1e-6,
ridge_epsilon=1e-6):
"""A method to compute G^{-1/p} using a coupled Newton iteration.
See for example equation 3.2 on page 9 of:
A Schur-Newton Method for the Matrix p-th Root and its Inverse
by Chun-Hua Guo and Nicholas J. Higham
SIAM Journal on Matrix Analysis and Applications,
2006, Vol. 28, No. 3 : pp. 788-804
https://pdfs.semanticscholar.org/0abe/7f77433cf5908bfe2b79aa91af881da83858.pdf
Args:
mat_g: A square positive semidefinite matrix
p: a positive integer
iter_count: Stop iterating after this many rounds.
error_tolerance: Threshold for stopping iteration
ridge_epsilon: We add this times I to G, to make is positive definite.
For scaling, we multiply it by the largest eigenvalue of G.
Returns:
(mat_g + rI)^{-1/p} (r = ridge_epsilon * max_eigenvalue of mat_g).
"""
shape = list(mat_g.shape)
if len(shape) == 1:
return torch.pow(mat_g + ridge_epsilon, -1/p)
identity = torch.eye(shape[0], device=mat_g.get_device())
if shape[0] == 1:
return identity
alpha = -1.0/p
max_ev, _, _ = PowerIter(mat_g)
ridge_epsilon *= max_ev
mat_g += ridge_epsilon * identity
z = (1 + p) / (2 * torch.norm(mat_g))
# The best value for z is
# (1 + p) * (c_max^{1/p} - c_min^{1/p}) /
# (c_max^{1+1/p} - c_min^{1+1/p})
# where c_max and c_min are the largest and smallest singular values of
# mat_g.
# The above estimate assumes that c_max > c_min * 2^p
# Can replace above line by the one below, but it is less accurate,
# hence needs more iterations to converge.
# z = (1 + p) / tf.trace(mat_g)
# If we want the method to always converge, use z = 1 / norm(mat_g)
# or z = 1 / tf.trace(mat_g), but these can result in many
# extra iterations.
mat_root = identity * torch.pow(z, 1.0/p)
mat_m = mat_g * z
error = torch.max(torch.abs(mat_m - identity))
count = 0
while error > error_tolerance and count < iter_count:
tmp_mat_m = (1 - alpha) * identity + alpha * mat_m
new_mat_root = torch.matmul(mat_root, tmp_mat_m)
mat_m = torch.matmul(MatPower(tmp_mat_m, p), mat_m)
new_error = torch.max(torch.abs(mat_m - identity))
if new_error > error * 1.2:
break
mat_root = new_mat_root
error = new_error
count += 1
return mat_root
# Grafting is a technique to fix the layerwise scale of Shampoo optimizer.
# https://arxiv.org/pdf/2002.11803.pdf studies this in detail. This
# allows us to plugin the Shampoo optimizer into settings where SGD/AdaGrad
# is already well tuned. Grafting onto Shampoo means take the Shampoo direction,
# but use the step magnitude from the grafted optimizer such as Adagrad or SGD.
class LayerwiseGrafting(enum.IntEnum):
NONE = 0
SGD = 1
ADAGRAD = 2
@dataclass
class ShampooHyperParams:
"""Shampoo hyper parameters."""
beta2: float = 0.9
diagonal_eps: float = 1e-6
matrix_eps: float = 1e-12
weight_decay: float = 0.0
inverse_exponent_override: int = 2 # fixed exponent for preconditioner, if >0
start_preconditioning_step: int = 1
# Performance tuning params for controlling memory and compute requirements.
# How often to compute preconditioner.
preconditioning_compute_steps: int = 1
# How often to compute statistics.
statistics_compute_steps: int = 1
# Block size for large layers (if > 0).
# Block size = 1 ==> Adagrad (Don't do this, extremely inefficient!)
# Block size should be as large as feasible under memory/time constraints.
block_size: int = 128
# Automatic shape interpretation (for eg: [4, 3, 1024, 512] would result in
# 12 x [1024, 512] L and R statistics. Disabled by default which results in
# Shampoo constructing statistics [4, 4], [3, 3], [1024, 1024], [512, 512].
best_effort_shape_interpretation: bool = True
# Type of grafting (SGD or AdaGrad).
# https://arxiv.org/pdf/2002.11803.pdf
graft_type: int = LayerwiseGrafting.ADAGRAD
# Nesterov momentum
nesterov: bool = True
class Graft:
"""Base class to perform grafting onto Shampoo. This class does no grafting.
"""
def __init__(self, hps, unused_var):
self.hps = hps
def add_statistics(self, grad):
pass
def precondition_gradient(self, grad):
return grad
def update_momentum(self, update, unused_beta1):
return update
class SGDGraft(Graft):
"""Graft using SGD+momentum.
momentum maintains an exponentially weighted moving average of gradients.
"""
def __init__(self, hps, var):
super(SGDGraft, self).__init__(hps, var)
self.momentum = torch.zeros_like(var.data, device=var.get_device())
def update_momentum(self, update, beta1):
self.momentum.mul_(beta1).add_(update)
return self.momentum
class AdagradGraft(SGDGraft):
"""Graft using Adagrad.
Essentially an implementation of Adagrad with momentum.
"""
def __init__(self, hps, var):
super(AdagradGraft, self).__init__(hps, var)
self.statistics = torch.zeros_like(var.data, device=var.get_device())
def add_statistics(self, grad):
self.statistics.add_(grad * grad)
def precondition_gradient(self, grad):
return grad / (torch.sqrt(self.statistics) + self.hps.diagonal_eps)
class BlockPartitioner:
"""Partitions a tensor into smaller tensors for preconditioning.
For example, if a variable has shape (4096, 512), we might split the
4096 into 4 blocks, so we effectively have 4 variables of size
(1024, 512) each.
"""
def __init__(self, var, hps):
self._shape = var.shape
self._splits = []
self._split_sizes = []
split_sizes = []
# We split var into smaller blocks. Here we store the metadata to make
# that split.
for i, d in enumerate(var.shape):
if hps.block_size > 0 and d > hps.block_size:
# d-1, otherwise split appends a 0-size array.
nsplit = (d-1) // hps.block_size
indices = (np.arange(nsplit, dtype=np.int32) + 1) * hps.block_size
sizes = np.ones(nsplit + 1, dtype=np.int32) * hps.block_size
sizes[-1] = d - indices[-1]
self._splits.append((i, indices))
self._split_sizes.append((i, sizes))
split_sizes.append(sizes)
else:
split_sizes.append(np.array([d], dtype=np.int32))
self._num_splits = len(split_sizes)
self._preconditioner_shapes = []
for t in itertools.product(*split_sizes):
self._preconditioner_shapes.extend([[d, d] for d in t])
def shapes_for_preconditioners(self):
return self._preconditioner_shapes
def num_splits(self):
return self._num_splits
def partition(self, tensor):
"""Partition tensor into blocks."""
assert tensor.shape == self._shape
tensors = [tensor]
for (i, sizes) in self._split_sizes:
tensors_local = []
for t in tensors:
tensors_local.extend(
torch.split(t, tuple(sizes), dim=i))
tensors = tensors_local
return tensors
def merge_partitions(self, partitions):
"""Merge partitions back to original shape."""
for (i, indices) in reversed(self._splits):
n = len(indices) + 1
partial_merged_tensors = []
ind = 0
while ind < len(partitions):
partial_merged_tensors.append(
torch.cat(partitions[ind:ind + n], axis=i))
ind += n
partitions = partial_merged_tensors
assert len(partitions) == 1
return partitions[0]
def _merge_small_dims(shape_to_merge, max_dim):
"""Merge small dimensions.
If there are some small dimensions, we collapse them:
e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if max_dim = 1024
[1, 2, 768, 1, 2048] --> [2, 768, 2048]
Args:
shape_to_merge: Shape to merge small dimensions.
max_dim: Maximal dimension of output shape used in merging.
Returns:
Merged shape.
"""
resulting_shape = []
product = 1
for d in shape_to_merge:
if product * d <= max_dim:
product *= d
else:
if product > 1:
resulting_shape.append(product)
product = d
if product > 1:
resulting_shape.append(product)
return resulting_shape
class Preconditioner:
"""Compute statistics/shape from gradients for preconditioning."""
def __init__(self, var, hps):
self._hps = hps
self._original_shape = var.shape
self._transformed_shape = var.shape
if hps.best_effort_shape_interpretation:
self._transformed_shape = _merge_small_dims(
self._original_shape, hps.block_size)
reshaped_var = torch.reshape(var, self._transformed_shape)
self._partitioner = BlockPartitioner(reshaped_var, hps)
shapes = self._partitioner.shapes_for_preconditioners()
rank = len(self._transformed_shape)
device = var.get_device()
if rank <= 1:
self.statistics = []
self.preconditioners = []
else:
eps = self._hps.matrix_eps
self.statistics = [eps * torch.eye(s[0], device=device) for s in shapes]
self.preconditioners = [torch.eye(s[0], device=device) for s in shapes]
def add_statistics(self, grad):
"""Compute statistics from gradients and add to the correct state entries.
Args:
grad: Gradient to compute statistics from.
"""
if not self.statistics: return
reshaped_grad = torch.reshape(grad, self._transformed_shape)
partitioned_grads = self._partitioner.partition(reshaped_grad)
w1 = self._hps.beta2
w2 = 1.0 if w1 == 1.0 else (1.0 - w1)
rank = len(self._transformed_shape)
for j, grad in enumerate(partitioned_grads):
for i in range(rank):
axes = list(range(i)) + list(range(i + 1, rank))
stat = torch.tensordot(grad, grad, [axes, axes])
self.statistics[j*rank + i].mul_(w1).add_(stat, alpha=w2)
def exponent_for_preconditioner(self):
"""Returns exponent to use for inverse-pth root M^{-1/p}."""
if self._hps.inverse_exponent_override > 0:
return self._hps.inverse_exponent_override
return 2 * len(self._transformed_shape)
def compute_preconditioners(self):
"""Compute L^{-1/exp} for each stats matrix L."""
exp = self.exponent_for_preconditioner()
eps = self._hps.matrix_eps
for i, stat in enumerate(self.statistics):
self.preconditioners[i] = ComputePower(
stat, exp, ridge_epsilon=eps)
def preconditioned_grad(self, grad):
"""Precondition the gradient.
Args:
grad: A gradient tensor to precondition.
Returns:
A preconditioned gradient.
"""
if not self.preconditioners: return grad
reshaped_grad = torch.reshape(grad, self._transformed_shape)
partitioned_grads = self._partitioner.partition(reshaped_grad)
preconditioned_partitioned_grads = []
num_splits = self._partitioner.num_splits()
for i, grad in enumerate(partitioned_grads):
preconditioners_for_grad = self.preconditioners[i * num_splits:(i + 1) *
num_splits]
rank = len(grad.shape)
precond_grad = grad
for j in range(rank):
preconditioner = preconditioners_for_grad[j]
precond_grad = torch.tensordot(
precond_grad, preconditioner, [[0], [0]])
preconditioned_partitioned_grads.append(precond_grad)
merged_grad = self._partitioner.merge_partitions(
preconditioned_partitioned_grads)
return torch.reshape(merged_grad, self._original_shape)
STEP = 'step'
MOMENTUM = 'momentum'
PRECONDITIONER = 'preconditioner'
GRAFT = 'graft'
class Shampoo(optim.Optimizer):
"""The Shampoo optimizer."""
def __init__(self,
params,
lr=1.0,
momentum=0.9,
hyperparams=ShampooHyperParams()):
defaults = dict(lr=lr, momentum=momentum)
self.hps = hyperparams
super(Shampoo, self).__init__(params, defaults)
def init_var_state(self, var, state):
"""Initialize the PyTorch state of for a single variable."""
state[STEP] = 0
state[MOMENTUM] = torch.zeros_like(var.data, device=var.get_device())
state[PRECONDITIONER] = Preconditioner(var, self.hps)
if self.hps.graft_type == LayerwiseGrafting.ADAGRAD:
state[GRAFT] = AdagradGraft(self.hps, var)
elif self.hps.graft_type == LayerwiseGrafting.SGD:
state[GRAFT] = SGDGraft(self.hps, var)
else:
state[GRAFT] = Graft(self.hps, var)
def step(self, closure=None):
hps = self.hps
for group in self.param_groups:
lr = group['lr']
for p in group['params']:
if p.grad is None: continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Shampoo does not support sparse yet')
state = self.state[p]
if not state:
self.init_var_state(p, state)
state[STEP] += 1
preconditioner = state[PRECONDITIONER]
graft = state[GRAFT]
# Gather statistics, compute preconditioners
graft.add_statistics(grad)
if state[STEP] % hps.statistics_compute_steps == 0:
preconditioner.add_statistics(grad)
if state[STEP] % hps.preconditioning_compute_steps == 0:
preconditioner.compute_preconditioners()
# Precondition gradients
graft_grad = graft.precondition_gradient(grad)
shampoo_grad = grad
if state[STEP] >= self.hps.start_preconditioning_step:
shampoo_grad = preconditioner.preconditioned_grad(grad)
# Grafting
graft_norm = torch.norm(graft_grad)
shampoo_norm = torch.norm(shampoo_grad)
shampoo_grad.mul_(graft_norm / (shampoo_norm + 1e-16))
# Weight decay
if self.hps.weight_decay != 0.0:
shampoo_grad.add_(p.data, alpha=self.hps.weight_decay)
graft_grad.add_(p.data, alpha=self.hps.weight_decay)
# Momentum and Nesterov momentum, if needed
state[MOMENTUM].mul_(group['momentum']).add_(shampoo_grad)
graft_momentum = graft.update_momentum(grad, group['momentum'])
if state[STEP] >= self.hps.start_preconditioning_step:
momentum_update = state[MOMENTUM]
wd_update = shampoo_grad
else:
momentum_update = graft_momentum
wd_update = graft_grad
if hps.nesterov:
momentum_update.mul_(group['momentum']).add_(wd_update)
# Final update
p.data.add_(momentum_update, alpha=-lr)