forked from jvdsn/crypto-attacks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
related_message.py
53 lines (45 loc) · 1.89 KB
/
related_message.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import logging
import os
import sys
from itertools import product
from sage.all import Zmod
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(os.path.abspath(__file__)))))
if sys.path[1] != path:
sys.path.insert(1, path)
from shared.polynomial import fast_polynomial_gcd
def attack(N, e, c1, c2, f1, f2):
"""
Recovers the shared secret if p1 and p2 are affinely related and encrypted with the same modulus and exponent.
Uses a fast GCD algorithm from "Polynomial Division and Greatest Common Divisors"
:param N: the modulus
:param e: the public exponent
:param c1: the ciphertext of the first encryption
:param c2: the ciphertext of the second encryption
:param f1: the first function to apply to the shared secret
:param f2: the second function to apply to the shared secret
:return: the shared secret
"""
x = Zmod(N)["x"].gen()
g1 = f1(x) ** e - c1
g2 = f2(x) ** e - c2
g = -fast_polynomial_gcd(g1, g2).monic()
return int(g[0])
def attack_xor(N, e, c1, c2, x):
"""
Recovers the shared secret if p1 = p2 ^ x and encrypted with the same modulus and exponent.
The complexity of this attack is 2^l, with l the hamming weight of x.
:param N: the modulus
:param e: the public exponent
:param c1: the ciphertext of the first encryption
:param c2: the ciphertext of the second encryption
:param x: the XOR difference
:return: a generator generating possible values of the shared secret
"""
shifts = []
for i in range(x.bit_length()):
if (x >> i) & 1 == 1:
shifts.append(1 << i)
logging.info(f"Brute forcing 2^{len(shifts)} possibilities, this might take some time...")
for signs in product([-1, 1], repeat=len(shifts)):
difference = sum(sign * shift for sign, shift in zip(signs, shifts))
yield attack(N, e, c1, c2, lambda x: x, lambda x: x + difference)