-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsweepline.hpp
656 lines (595 loc) · 20.5 KB
/
sweepline.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/* Fortune's algorithm implementation
*
* Copyright (c) 2016, Anatoliy V. Tomilov
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following condition is met:
* Redistributions of source code must retain the above copyright notice, this condition and the following disclaimer.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "rb_tree.hpp"
#include <type_traits>
#include <utility>
#include <tuple>
#include <functional>
#include <iterator>
#include <algorithm>
#include <numeric>
#include <deque>
#include <list>
#ifdef DEBUG
#include <iostream>
#endif
#include <cassert>
#include <cmath>
template< typename site,
typename point = typename std::iterator_traits< site >::value_type,
typename value_type = decltype(std::declval< point >().x) >
struct sweepline
{
static_assert(std::is_base_of< std::forward_iterator_tag, typename std::iterator_traits< site >::iterator_category >::value,
"multipass guarantee required");
explicit
sweepline(value_type eps)
: less_{std::move(eps)}
{
assert(!(eps < value_type(0)));
}
struct vertex // circumscribed circle
{
point c; // circumcenter
value_type R; // circumradius
};
using vertices = std::deque< vertex >;
using pvertex = typename vertices::size_type;
// ((l, r), (b, e)) is CW
// (b == inf) means (b == (-infty, *)); (e == inf) means (e == (+infty, *))
// in all other cases (b->c < e->c)
struct edge
{
site l, r;
pvertex b, e;
};
using edges = std::deque< edge >;
using pedge = typename edges::size_type;
vertices vertices_; // 0 <= size <= 2 * n - 2
const pvertex inf = std::numeric_limits< pvertex >::max();
edges edges_; // n - 1 <= size <= 3 * n - 3
private :
struct endpoint
{
const site l;
const site r;
const pedge e;
value_type angle() const
{
const point & ll = *l;
const point & rr = *r;
using std::atan2;
return atan2(rr.x - ll.x, rr.y - ll.y);
}
};
static
value_type event_x(const vertex & v)
{
return v.c.x + v.R;
}
struct less
{
const value_type eps;
const value_type eps2 = eps * eps;
bool operator () (const value_type & l,
const value_type & r) const
{
return l + eps < r;
}
bool operator () (const value_type & lx, const value_type & ly,
const value_type & rx, const value_type & ry) const
{
if (operator () (lx, rx)) {
return true;
} else if (operator () (rx, lx)) {
return false;
} else if (operator () (ly, ry)) {
return true;
} else {
assert(!operator () (ry, ly));
return false;
}
}
bool operator () (const vertex & l, const vertex & r) const
{
return operator () (event_x(l), l.c.y, event_x(r), r.c.y);
}
bool operator () (const point & l, const point & r, const point & p, const bool right) const
{
const auto sqr_dist = [&] (const bool left) -> bool
{
const point c = {(l.x + r.x) / value_type(2), (l.y + r.y) / value_type(2)};
value_type dx = c.x + (p.y - c.y) * (r.y - l.y) / (l.x - r.x);
const value_type & dxy = p.x - dx;
dx -= r.x;
const value_type & dy = r.y - p.y;
const value_type & ll = dy * dy + dx * dx;
const value_type & rr = dxy * dxy;
if (left) {
return rr + eps2 < ll;
} else {
return ll + eps2 < rr;
}
};
if (operator () (l.x, r.x)) {
if (operator () (p.y, r.y)) {
return sqr_dist(!right);
} else {
return right;
}
} else if (operator () (r.x, l.x)) {
if (operator () (l.y, p.y)) {
return sqr_dist(right);
} else {
return !right;
}
} else {
assert(operator () (l.y, r.y));
const value_type & ll = (l.y + r.y) / value_type(2);
const value_type & rr = p.y;
if (right) {
return operator () (ll, rr);
} else {
return operator () (rr, ll);
}
}
}
bool operator () (const point & l, const endpoint & r) const
{
return operator () (*r.l, *r.r, l, false);
}
bool operator () (const endpoint & l, const point & r) const
{
return operator () (*l.l, *l.r, r, true);
}
} const less_;
struct pevent;
using endpoints = rb_tree::map< endpoint, pevent, less >;
using pendpoint = typename endpoints::iterator;
using rays = std::list< pendpoint >;
using pray = typename rays::iterator;
template< typename type >
struct range { type l, r; };
using bundle = range< const pray >;
using events = rb_tree::map< vertex, bundle const, less >;
using pevent_base = typename events::iterator;
struct pevent : pevent_base { pevent(const pevent_base it) : pevent_base{it} { ; } };
endpoints endpoints_{less_};
const pendpoint nep = std::end(endpoints_);
rays rays_;
const pray nray = std::end(rays_);
pray rev = nray; // revocation boundary
events events_{less_};
const pevent nev = std::end(events_);
vertex make_vertex(const point & a,
const point & b,
const point & c) const
{
const point ca = {a.x - c.x, a.y - c.y};
const point cb = {b.x - c.x, b.y - c.y};
vertex vertex_{{}, ca.y * cb.x - ca.x * cb.y};
if (less_.eps2 < vertex_.R) { // if CW
// interesting, that probability of this branch tends to 0.6 for points in general positions
vertex_.R += vertex_.R;
const value_type A = ca.x * ca.x + ca.y * ca.y;
const value_type B = cb.x * cb.x + cb.y * cb.y;
vertex_.c.x = (B * ca.y - A * cb.y) / vertex_.R;
vertex_.c.y = (cb.x * A - ca.x * B) / vertex_.R;
using std::sqrt; // std::sqrt is required by the IEEE standard be exact (error < 0.5 ulp)
vertex_.R = sqrt(vertex_.c.x * vertex_.c.x + vertex_.c.y * vertex_.c.y);
vertex_.c.x += c.x;
vertex_.c.y += c.y;
}
return vertex_;
}
void add_ray(const pray rr, const pendpoint l)
{
assert(rr != nray);
if (nray == rev) {
rays_.insert(rr, l);
} else {
*rev = l;
rays_.splice(rr, rays_, rev++);
}
}
bundle add_bundle(const pendpoint l, const pendpoint r)
{
if (rev == nray) {
return {rays_.insert(nray, l), rays_.insert(nray, r)};
} else {
const pray ll = rev;
*ll = l;
if (++rev == nray) {
return {ll, rays_.insert(nray, r)};
} else {
*rev = r;
return {ll, rev++};
}
}
}
void remove_bundle(const bundle & b)
{
rays_.splice(nray, rays_, b.l, std::next(b.r));
if (rev == nray) {
rev = b.l;
}
}
pevent disable_event(const pevent ev)
{
assert(ev != nev);
const bundle & b = ev->v;
assert(b.l != b.r);
assert(nray != b.r);
remove_bundle(b);
assert(std::next(b.r) == nray);
for (auto l = b.l; l != nray; ++l) {
const pendpoint ep = *l;
assert(ep->v == ev);
ep->v = nev;
}
return events_.erase(ev);
}
void check_event(const pendpoint l, const pendpoint r)
{
assert(std::next(l) == r);
auto & ll = *l;
auto & rr = *r;
assert(ll.k.r == rr.k.l);
vertex vertex_ = make_vertex(*ll.k.l, *ll.k.r, *rr.k.r);
if (less_.eps2 < vertex_.R) {
const value_type & x = event_x(vertex_);
const auto le = events_.find(vertex_);
const auto deselect_event = [&] (const pevent ev) -> bool
{
if (ev != nev) {
if (ev != le) {
const value_type & xx = event_x(ev->k);
if (less_(xx, x)) {
return true;
}
assert(less_(x, xx)); // not equiv
disable_event(ev);
}
}
return false;
};
if (deselect_event(ll.v) || deselect_event(rr.v)) {
if (le != nev) {
disable_event(le);
}
} else {
if (le == nev) {
assert(ll.v == nev);
assert(rr.v == nev);
const auto ev = events_.insert({std::move(vertex_), add_bundle(l, r)});
assert(ev.v);
ll.v = rr.v = ev.k;
} else {
const bundle & b = le->v;
const auto set_event = [&] (pevent & ev, const pendpoint ep)
{
if (ev == nev) {
ev = le;
add_ray(b.r, ep);
} else {
assert(ev == le);
assert(std::find(b.l, std::next(b.r), ep) != std::next(b.r));
}
};
set_event(ll.v, l);
set_event(rr.v, r);
}
}
}
}
pedge add_edge(const site l, const site r, const pvertex v)
{
assert(l != r);
const point & ll = *l;
const point & rr = *r;
const pedge e = edges_.size();
if (std::tie(ll.y, rr.x) < std::tie(rr.y, ll.x)) {
edges_.push_back({l, r, v, inf});
} else {
edges_.push_back({r, l, inf, v});
}
return e;
}
void truncate_edge(const pedge e, const pvertex v)
{
assert(v != inf);
edge & edge_ = edges_[e];
if (edge_.b != inf) {
assert(edge_.b != v);
assert(edge_.e == inf);
edge_.e = v;
} else if (edge_.e != inf) {
assert(edge_.e != v);
edge_.b = v;
} else {
const point & l = *edge_.l;
const point & r = *edge_.r;
const point & c = vertices_[v].c;
assert(!(r.y < l.y));
if (r.x < l.x) {
if (c.y < l.y) {
edge_.b = v;
return;
}
} else if (l.x < r.x) {
if (r.y < c.y) {
edge_.b = v;
return;
}
} else {
assert(l.y < c.y);
assert(c.y < r.y);
}
edge_.e = v;
return;
}
// workaround for floating point math
if (vertices_[edge_.e].c < vertices_[edge_.b].c) {
std::swap(edge_.l, edge_.r);
std::swap(edge_.b, edge_.e);
}
}
pendpoint insert_endpoint(const pendpoint ep,
const site l, const site r,
const pedge e)
{
return endpoints_.force_insert(ep, {{l, r, e}, nev});
}
pendpoint add_cell(const site c, const site s)
{
assert(*c < *s);
const pedge e = add_edge(c, s, inf);
const pendpoint r = insert_endpoint(nep, c, s, e);
if (less_(c->x, s->x)) {
const pendpoint rr = insert_endpoint(nep, s, c, e);
assert(std::next(r) == rr);
}
return r;
}
void begin_cell(const site s)
{
assert(!endpoints_.empty());
auto lr = endpoints_.equal_range(*s);
if (lr.l == lr.r) {
if (lr.l == nep) { // append to the rightmost endpoint
--lr.l;
lr.r = add_cell(lr.l->k.r, s);
} else if (lr.l == std::begin(endpoints_)) { // prepend to the leftmost endpoint
const site c = lr.r->k.l;
const pedge e = add_edge(s, c, inf);
const pendpoint ll = insert_endpoint(lr.r, c, s, e);
lr.l = insert_endpoint(lr.r, s, c, e);
assert(std::next(ll) == lr.l);
} else { // insert in the middle of the beachline (hottest branch in general case)
--lr.l;
const site c = lr.l->k.r;
assert(c == lr.r->k.l);
const pedge e = add_edge(c, s, inf);
const pendpoint ll = insert_endpoint(lr.r, c, s, e);
const pendpoint rr = insert_endpoint(lr.r, s, c, e);
assert(std::next(ll) == rr);
check_event(lr.l, ll);
check_event(rr, lr.r);
return;
}
check_event(lr.l, lr.r);
} else {
assert(std::next(lr.l) == lr.r); // if fires, then there is problem with precision
const auto & endpoint_ = *lr.l;
if (endpoint_.v != nev) {
assert(less_(s->x, event_x(endpoint_.v->k)));
disable_event(endpoint_.v);
}
vertex vertex_ = make_vertex(*s, *endpoint_.k.l, *endpoint_.k.r);
assert(less_.eps2 < vertex_.R);
assert(events_.find(vertex_) == nev);
assert(!less_(s->x, s->y, event_x(vertex_), vertex_.c.y)); // vertex and site are equivalent
assert(!less_(event_x(vertex_), vertex_.c.y, s->x, s->y)); // vertex and site are equivalent
const pvertex v = vertices_.size();
vertices_.push_back(std::move(vertex_));
truncate_edge(endpoint_.k.e, v);
const pedge le = add_edge(endpoint_.k.l, s, v);
const pedge re = add_edge(s, endpoint_.k.r, v);
const pendpoint ep = insert_endpoint(lr.r, s, endpoint_.k.r, re);
assert(std::next(ep) == lr.r);
endpoints_.erase(std::exchange(lr.l, insert_endpoint(ep, endpoint_.k.l, s, le)));
assert(std::next(lr.l) == ep);
if (lr.l != std::begin(endpoints_)) {
check_event(std::prev(lr.l), lr.l);
}
if (lr.r != nep) {
check_event(ep, lr.r);
}
}
}
range< pendpoint >
endpoint_range(pray l, pray r)
{
assert(l != nray);
assert(r != nray);
assert(std::next(r) == nray);
assert(l != r);
if (std::next(l) == r) {
assert(std::next(*l) == *r);
} else {
const auto angle_less = [] (const pendpoint ll, const pendpoint rr) -> bool
{
return ll->k.angle() < rr->k.angle();
};
#if 0
rays crays_;
crays_.splice(std::cend(crays_), rays_, l, nray);
crays_.sort(angle_less);
l = std::begin(crays_);
rays_.splice(nray, std::move(crays_));
r = std::prev(nray);
#else
std::tie(l, r) = std::minmax_element(l, nray, angle_less);
#endif
}
return {*l, *r};
}
bool check_endpoint_range(const pevent ev, pendpoint l, const pendpoint r) const
{
if (r == nep) {
return false;
}
if (l == r) {
return false;
}
site s = l->k.r;
do {
++l;
if (std::exchange(s, l->k.r) != l->k.l) {
assert(false);
return false;
}
if (l->v != ev) {
assert(false);
return false;
}
} while (l != r);
return true;
}
void finish_cells(const pevent ev,
const vertex & _vertex,
const bundle & b,
const site l, const site r)
{
remove_bundle(b);
auto lr = endpoint_range(b.l, b.r);
assert(check_endpoint_range(ev, lr.l, lr.r));
const pvertex v = vertices_.size();
vertices_.push_back(_vertex);
events_.erase(ev);
const site ll = lr.l->k.l;
const site rr = lr.r->k.r;
++lr.r;
do {
truncate_edge(lr.l->k.e, v);
endpoints_.erase(lr.l++);
} while (lr.l != lr.r);
if (l == r) {
lr.l = insert_endpoint(lr.r, ll, rr, add_edge(ll, rr, v));
if (lr.l != std::begin(endpoints_)) {
check_event(std::prev(lr.l), lr.l);
}
if (lr.r != nep) {
check_event(lr.l, lr.r);
}
} else {
const pendpoint ep = insert_endpoint(lr.r, l, rr, add_edge(l, rr, v));
lr.l = insert_endpoint(ep, ll, l, add_edge(ll, l, v));
assert(std::next(lr.l) == ep);
if (lr.l != std::begin(endpoints_)) {
check_event(std::prev(lr.l), lr.l);
}
if (lr.r != nep) {
check_event(ep, lr.r);
}
}
}
bool check_last_endpoints() const
{
for (const auto & ep : endpoints_) {
const edge & e = edges_[ep.k.e];
if ((e.b != inf) && (e.e != inf)) {
return false;
}
if (ep.v != nev) {
return false;
}
}
return true;
}
bool process_events(const site l, const site r)
{
if (!events_.empty()) {
const point & point_ = *l;
do {
const pevent ev = std::begin(events_);
const auto & event_ = *ev;
const value_type & x = event_x(event_.k);
if (less_(point_.x, x)) {
break;
} else if (!less_(x, point_.x)) {
const value_type & y = event_.k.c.y;
if (less_(point_.y, y)) {
break;
} else if (!less_(y, point_.y)) {
finish_cells(ev, event_.k, event_.v, l, r);
return false;
}
}
finish_cells(ev, event_.k, event_.v, l, l);
} while (!events_.empty());
}
return true;
}
public :
template< typename iterator >
void operator () (iterator l, const iterator r)
{
static_assert(std::is_base_of< std::forward_iterator_tag, typename std::iterator_traits< iterator >::iterator_category >::value,
"multipass guarantee required");
assert(std::is_sorted(l, r));
assert(endpoints_.empty());
assert(vertices_.empty());
assert(edges_.empty());
if (l == r) {
return;
}
const iterator ll = l;
if (++l == r) {
return;
}
add_cell(ll, l);
while (++l != r) {
if (process_events(l, r)) {
begin_cell(l);
}
}
while (!events_.empty()) {
const pevent ev = std::begin(events_);
const auto & event_ = *ev;
finish_cells(ev, event_.k, event_.v, r, r);
}
//assert(std::is_sorted(std::begin(vertices_), nv, less_)); // almost true
assert(rev == std::begin(rays_));
assert(check_last_endpoints());
endpoints_.clear();
}
void clear()
{
assert(rev == std::begin(rays_));
assert(endpoints_.empty());
assert(events_.empty());
vertices_.clear();
edges_.clear();
}
};