Skip to content

Latest commit

 

History

History
executable file
·
406 lines (326 loc) · 13.6 KB

README.md

File metadata and controls

executable file
·
406 lines (326 loc) · 13.6 KB

车辆检测

将会进行如下操作:

  1. 定义图像特征提取方

  2. 读入车辆和非车辆图像数据

  3. 数据预处理,shuffle,标准化

  4. 训练模型,使用的是svm

  5. 测试模型

  6. 使用滑动窗口和多尺度的图像大小在图像上检测车辆

    • 滑动窗口
    • 多尺度图像
    • heatmap
    • label
    • box center
  7. 检测视频中行驶的车辆

总结:车辆检测主要是两方面的内容,1:物体识别 2:滑动窗口

  • 汽车和非汽车图片展示

    import glob
    import matplotlib.pyplot as plt
    
    vehicle_lable = 1
    non_vehicle_label = 0
    
    # 读入数据
    vehicles_file_paths = glob.glob("./vehicles/*/*.png")
    non_vehicles_file_paths = glob.glob("./non-vehicles/*/*.png")
    print("汽车样本数量:" , len(vehicles_file_paths))
    print("非汽车样本数量:" , len(non_vehicles_file_paths))
    
    # 显示汽车和非汽车图片
    vehicle_img = mpimg.imread(vehicles_file_paths[0])
    non_vehicle_img = mpimg.imread(non_vehicles_file_paths[0])
    fig, (ax1, ax2) = plt.subplots(1, 2 ,figsize=(8, 20))
    ax1.imshow(vehicle_img)
    ax1.set_title("vehicle")
    ax2.imshow(non_vehicle_img)
    ax2.set_title("non_vehicle")
    plt.show()

    1

  • 提取HOG特征

    hog参数说明:

    orientations:每个cell直方图的方向的个数

    pix_per_cell:每个cell像素个数

    cells_per_block:每个block的cell个数

    import numpy as np
    import cv2
    import matplotlib.image as mpimg 
    
    def convert_color(img, conv):
        """
        颜色空间转换
        """
        return cv2.cvtColor(img, conv)
    
    def get_hog_features(img, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True):
        """
        提取图像的hog特征
        """
        if vis == True:
            features, hog_image = hog(img, orientations=orient, 
                                      pixels_per_cell=(pix_per_cell, pix_per_cell),
                                      cells_per_block=(cell_per_block, cell_per_block),
                                      block_norm= 'L2-Hys',
                                      transform_sqrt=False, 
                                      visualise=vis, feature_vector=feature_vec)
            return features, hog_image
        else:
            features = hog(img, orientations=orient, 
                           pixels_per_cell=(pix_per_cell, pix_per_cell),
                           cells_per_block=(cell_per_block, cell_per_block),
                           block_norm= 'L2-Hys',
                           transform_sqrt=False, 
                           visualise=vis, feature_vector=feature_vec)
            return features
    
    # 测试提取HOG特征
    vehicle_img = mpimg.imread(vehicles_file_paths[0])
    non_vehicle_img = mpimg.imread(non_vehicles_file_paths[0])
    v_hog_feats,v_hog_imgs = get_hog_features(vehicle_img[:, :, 0], 9, 8, 2, vis=True, feature_vec=False)
    n_hog_feats,n_hog_imgs = get_hog_features(non_vehicle_img[:, :, 0], 9, 8, 2, vis=True, feature_vec=False)
    
    # 显示汽车和非汽车图片
    vehicle_img = mpimg.imread(vehicles_file_paths[0])
    non_vehicle_img = mpimg.imread(non_vehicles_file_paths[0])
    fig, (ax1, ax2) = plt.subplots(1, 2 ,figsize=(8, 20))
    ax1.imshow(v_hog_imgs, cmap="gray")
    ax1.set_title("vehicle")
    ax2.imshow(n_hog_imgs, cmap="gray")
    ax2.set_title("non_vehicle")
    plt.show()

    2

  • 提取空间特征和颜色直方图特征,且把之上的特征进行合并。

    def bin_spatial(img, size=(32, 32)):
        """
        提取图像的空间特征
        """
        color1 = cv2.resize(img[:,:,0], size).ravel()
        color2 = cv2.resize(img[:,:,1], size).ravel()
        color3 = cv2.resize(img[:,:,2], size).ravel()
        return np.hstack((color1, color2, color3))
    
    def color_hist(img, nbins=32):
        """
        颜色直方图
        """
        channel1_hist = np.histogram(img[:,:,0], bins=nbins)
        channel2_hist = np.histogram(img[:,:,1], bins=nbins)
        channel3_hist = np.histogram(img[:,:,2], bins=nbins)
        hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0]))
        return hist_features
    
    def extract_img_features(img):
        """
        把之上的图像处理方法进行综合,且对结果进行归一化处理
        """
        img = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
        hist_feature = color_hist(img)
        spatial_feature = bin_spatial(img)
        ch1 = img[:, :, 0]
        ch2 = img[:, :, 1]
        ch3 = img[:, :, 2]
        ch1_hog_feature = get_hog_features(ch1, 9, 8, 2)
        ch2_hog_feature = get_hog_features(ch2, 9, 8, 2)
        ch3_hog_feature = get_hog_features(ch3, 9, 8, 2)
        hog_features = np.hstack((ch1_hog_feature, ch2_hog_feature, ch3_hog_feature))
        features = np.concatenate((hist_feature, spatial_feature, hog_features))
        return features
  • 根据上边的图像特征提取方法,对所有的数据进行特征提取

    X = []
    y = []
    for path in vehicles_file_paths:
        img = mpimg.imread(path)
        features = extract_img_features(img)
        X.append(features)
        y.append(vehicle_lable)
    
    for path in non_vehicles_file_paths:
        img = mpimg.imread(path)
        features = extract_img_features(img)
        X.append(features)
        y.append(non_vehicle_label)
  • 数据预处理

    shuffle —> train_test_split—>StandardScaler

    注意:数据标准化的时候,使用训练数据作为fit的对象。

    from skimage.feature import hog
    from sklearn.model_selection import train_test_split
    from sklearn.utils import shuffle
    from sklearn.preprocessing import StandardScaler
    
    # shuffle
    X, y = shuffle(X, y)
    # split
    rand_state = np.random.randint(0, 100)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=rand_state)
    # scaller
    X_scaler = StandardScaler().fit(X_train)
    X_train = X_scaler.transform(X_train)
    X_test = X_scaler.transform(X_test)
  • 训练模型

    from sklearn.svm import LinearSVC
    
    svm = LinearSVC()
    svm.fit(X_train, y_train)
  • 测试模型

    最后模型的准确率为:0.986204954955

    from sklearn.metrics import accuracy_score
    
    predicts = svm.predict(X_test)
    score = accuracy_score(predicts, y_test)
    print("在测试数据上的准确率为:" + score)
  • 从图片中检测汽车

    滑动窗口技术是关键

    因为不知道检测物体的大小,远的地方车辆看起来小,近的地方看起来大。为了得到合适的检测数据,需要图片进行适当的缩放。但是这样带来的后果是,计算量会急剧增加。可以采查找车辆只在图像的下半部分,因为上半部分是天空。为了提高效率,先对整幅图像进行HOG特征提取,然后再根据需要进行特征分割。

    def find_cars(img, ystart, ystop, scale, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins):
        """
        检测当前图像中的所有可能的汽车位置
        """
        
        boxs = []
        draw_img = np.copy(img)
        img = img.astype(np.float32)/255
        
        img_tosearch = img[ystart:ystop,:,:]
        ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2YCrCb)
        if scale != 1:
            imshape = ctrans_tosearch.shape
            ctrans_tosearch = cv2.resize(ctrans_tosearch, (np.int(imshape[1]/scale), np.int(imshape[0]/scale)))
            
        ch1 = ctrans_tosearch[:,:,0]
        ch2 = ctrans_tosearch[:,:,1]
        ch3 = ctrans_tosearch[:,:,2]
    
        # Define blocks and steps as above
        nxblocks = (ch1.shape[1] // pix_per_cell) - cell_per_block + 1
        nyblocks = (ch1.shape[0] // pix_per_cell) - cell_per_block + 1 
        nfeat_per_block = orient*cell_per_block**2
        
        # 64 was the orginal sampling rate, with 8 cells and 8 pix per cell
        window = 64
        nblocks_per_window = (window // pix_per_cell) - cell_per_block + 1
        cells_per_step = 2  # Instead of overlap, define how many cells to step
        nxsteps = (nxblocks - nblocks_per_window) // cells_per_step + 1
        nysteps = (nyblocks - nblocks_per_window) // cells_per_step + 1
        
        # Compute individual channel HOG features for the entire image
        hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False)
        hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False)
        hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False)
        
        for xb in range(nxsteps):
            for yb in range(nysteps):
                ypos = yb*cells_per_step
                xpos = xb*cells_per_step
                # Extract HOG for this patch
                hog_feat1 = hog1[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() 
                hog_feat2 = hog2[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() 
                hog_feat3 = hog3[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel() 
                hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))
    
                xleft = xpos*pix_per_cell
                ytop = ypos*pix_per_cell
    
                # Extract the image patch
                subimg = cv2.resize(ctrans_tosearch[ytop:ytop+window, xleft:xleft+window], (64,64))
              
                # Get color features
                spatial_features = bin_spatial(subimg, size=spatial_size)
                hist_features = color_hist(subimg, nbins=hist_bins)
    
                # Scale features and make a prediction
                test_features = X_scaler.transform(np.hstack((hist_features, spatial_features, hog_features)).reshape(1, -1))    
                #test_features = X_scaler.transform(np.hstack((shape_feat, hist_feat)).reshape(1, -1))    
                test_prediction = svc.predict(test_features)
                if test_prediction == 1:
                    xbox_left = np.int(xleft*scale)
                    ytop_draw = np.int(ytop*scale)
                    win_draw = np.int(window*scale)
                    boxs.append([(xbox_left, ytop_draw+ystart),(xbox_left+win_draw,ytop_draw+win_draw+ystart)])
        return boxs
    
    img = mpimg.imread("test_images/test1.jpg")
    boxs = find_cars(img, 400, 600, 1, svm, X_scaler, 9, 8, 2, (32, 32), 32)
    for box in boxs:
        cv2.rectangle(img, box[0], box[1], (0, 0, 255), 6)
    plt.imshow(img)
    plt.show()

    3

  • 使用heatmap去掉错误检测的数据

    错误检测的数据出现的频率不高,根据频率去掉低频率的数据点,保留高频率的数据点。

    # 创建热度图
    heatmap = np.zeros_like(img[:, :, :]).astype(np.float)
    for box in boxs:
        heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0], 0] += 1
    fig,(ax1, ax2) = plt.subplots(1, 2, figsize=(15, 20))
    ax1.imshow(heatmap)
    ax1.set_title("heatmap")
    heatmap[heatmap < 3] = 0 
    ax2.imshow(heatmap)
    ax2.set_title("heatmap_filted")
    plt.show()

    4

  • 使用label把检测到的区域外接矩形框。

    from scipy.ndimage.measurements import label
    
    labels = label(heatmap)
    for car_number in range(1, labels[1] + 1):
        nonzero = (labels[0] == car_number).nonzero()
        nonzeroy = np.array(nonzero[0])
        nonzerox = np.array(nonzero[1])
        bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy)))
        cv2.rectangle(img, bbox[0], bbox[1], (0, 0, 255), 6)
       
    fig,ax1 = plt.subplots(1, 1, figsize=(7, 12))
    ax1.imshow(img)
    plt.show()

    5

  • 设置中心点检测判断

    每检测完一幅图像,记录一下在该图像中检测到的矩形框的中心点。下次检测到的矩形框判断是否有中心点在其中。这样可以减少错误的判断。

    box_center = []
    def detect_object(img):
        
        bbox_list = []
        # 分别对各个尺度的窗口查找汽车的位置
        boxs = find_cars(img, 400, 656, 1.2, svm, X_scaler, 9, 8, 2, (32, 32), 32)
        bbox_list = bbox_list + boxs
        boxs = find_cars(img, 400, 600, 1, svm, X_scaler, 9, 8, 2, (32, 32), 32)
        bbox_list = bbox_list + boxs
        boxs = find_cars(img, 400, 500, 0.8, svm, X_scaler, 9, 8, 2, (32, 32), 32)
        bbox_list = bbox_list + boxs
        # 创建热度图
        heatmap = np.zeros_like(img[:, :, 0]).astype(np.float)
        for box in bbox_list:
            heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1
        # 排除掉出现频率小的汽车检测位置
        heatmap[heatmap <=8] = 0
        # 对汽车的位置进行标记,画矩形
        labels = label(heatmap)
        for car_number in range(1, labels[1] + 1):
            nonzero = (labels[0] == car_number).nonzero()
            nonzeroy = np.array(nonzero[0])
            nonzerox = np.array(nonzero[1])
            bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy)))
            if len(box_center) > 0:
                for center in box_center:
                    if bbox[0][0]  < center[0] < bbox[1][0]  and bbox[0][1] < center[1] < bbox[1][1]:
                        cv2.rectangle(img, bbox[0], bbox[1], (0, 0, 255), 6)
                        break
            box_center.append(((bbox[0][0]+bbox[1][0] )/2, (bbox[0][1] + bbox[1][1])/2))
        return img
  • 处理视频中的车辆检测

    from moviepy.editor import VideoFileClip
    
    clip1 = VideoFileClip("project_video.mp4")
    white_clip = clip1.fl_image(detect_object)
    #white_clip.write_images_sequence("test_challenge/frame%2d.jpg")
    white_clip.write_videofile("project_video_output.mp4", audio=False)
  • 展示,视频地址 点这里

    from IPython.display import HTML
    
    HTML("""
    <video width="960" height="540" controls>
      <source src="{0}">
    </video>
    """.format("project_video_output.mp4"))

    6