-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
71 lines (54 loc) · 2.36 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>ToPS: Toolkit for probabilistic model of sequences</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
<style type="text/css">
@import url("tops.css");
</style>
</head>
<body>
<div id="wrap">
<div id="header">
<h1> ToPS: Toolkit for Probabilistic Models of Sequence</h1>
</div>
<div id="content">
<h1>Overview</h1>
<p> ToPS is an objected-oriented framework implemented using C++ that
facilitates the integration of probabilistic models for sequences
over a user defined alphabet. ToPS contains the implementation of
eight type of models to analyze discrete sequences: </p>
<ol>
<li> Independent and identically distributed model</li>
<li> Variable-Length Markov Chain (VLMC)</li>
<li> Inhomogeneous Markov Chain</li>
<li> Hidden Markov Model</li>
<li> Pair Hidden Markov Model</li>
<li> Profile Hidden Markov Model</li>
<li> Similarity Based Sequence Weighting </li>
<li>Generalized Hidden Markov Model (GHMM)</li>
</ol>
<p> The user can implement models either by manual description of
the probability values in a configuration file, or by using training
algorithms provided by the system. The ToPS framework also includes a
set of programs that implement bayesian classifiers,
sequence samplers, and sequence decoders. Finally, ToPS is
an extensible and portable system that facilitates the implementation of other probabilistic models, and the development of new programs. </p>
<h1>Publication</h1>
<ul><li> Kashiwabara AY, Bonadio, Onuchic V, Amado F, Mathias R, and Durham, AM (2013) <b> ToPS: A Framework to Manipulate Probabilistic Models of Sequence Data.</b> PLoS Comput Biol 9(10): e1003234. doi:10.1371/journal.pcbi.1003234 </li></ul>
</div>
<div id="sidebar">
<ul>
<li> <a href="index.html">Overview</a></li>
<li> <a href="api.html">Documentation</a></li>
<li> <a href="download.html">Download</a></li>
<li> <a href="contact.html">Contacts</a></li>
</ul>
</div>
<div id="footer">
©2009 - Andre Y. Kashiwabara and Alan Mitchell Durham
</div>
</div>
</body>
</html>