forked from juj/fbcp-ili9341
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dma.cpp
760 lines (653 loc) · 29.1 KB
/
dma.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
#ifndef KERNEL_MODULE
#include <stdio.h> // fprintf, stderr
#include <stdlib.h> // exit
#include <memory.h> // memset, memcpy
#include <inttypes.h> // uint32_t
#include <syslog.h> // syslog
#include <sys/mman.h> // mmap, munmap, PROT_READ, PROT_WRITE
#endif
#include "config.h"
#include "dma.h"
#include "spi.h"
#include "gpu.h"
#include "util.h"
#include "mailbox.h"
#ifdef USE_DMA_TRANSFERS
#define BCM2835_PERI_BASE 0x3F000000
SharedMemory *dmaSourceMemory = 0;
volatile DMAChannelRegisterFile *dma0 = 0;
volatile DMAChannelRegisterFile *dmaTx = 0;
volatile DMAChannelRegisterFile *dmaRx = 0;
int dmaTxChannel = -1;
int dmaTxIrq = 0;
int dmaRxChannel = -1;
int dmaRxIrq = 0;
#define PAGE_SIZE 4096
struct GpuMemory
{
uint32_t allocationHandle;
void *virtualAddr;
uintptr_t busAddress;
uint32_t sizeBytes;
};
#define NUM_DMA_CBS 1024
GpuMemory dmaCb, dmaSourceBuffer, dmaConstantData;
volatile DMAControlBlock *dmaSendTail = 0;
volatile DMAControlBlock *dmaRecvTail = 0;
volatile DMAControlBlock *firstFreeCB = 0;
volatile uint8_t *dmaSourceEnd = 0;
volatile DMAControlBlock *GrabFreeCBs(int num)
{
volatile DMAControlBlock *firstCB = (volatile DMAControlBlock *)dmaCb.virtualAddr;
volatile DMAControlBlock *endCB = firstCB + NUM_DMA_CBS;
if ((uintptr_t)(firstFreeCB + num) >= (uintptr_t)dmaCb.virtualAddr + dmaCb.sizeBytes)
{
WaitForDMAFinished();
firstFreeCB = firstCB;
}
volatile DMAControlBlock *ret = firstFreeCB;
firstFreeCB += num;
return ret;
}
volatile uint8_t *GrabFreeDMASourceBytes(int bytes)
{
if ((uintptr_t)dmaSourceEnd + bytes >= (uintptr_t)dmaSourceBuffer.virtualAddr + dmaSourceBuffer.sizeBytes)
{
WaitForDMAFinished();
dmaSourceEnd = (volatile uint8_t *)dmaSourceBuffer.virtualAddr;
}
volatile uint8_t *ret = dmaSourceEnd;
dmaSourceEnd += bytes;
return ret;
}
static int AllocateDMAChannel(int *dmaChannel, int *irq)
{
// Snooping DMA, channels 3, 5 and 6 seen active.
// TODO: Actually reserve the DMA channel to the system using bcm_dma_chan_alloc() and bcm_dma_chan_free()?...
// Right now, use channels 1 and 4 which seem to be free.
// Note: The send channel could be a lite channel, but receive channel cannot, since receiving uses the IGNORE flag
// that lite DMA engines don't have.
#ifdef FREEPLAYTECH_WAVESHARE32B
// On FreePlayTech Zero, DMA channel 4 seen to be taken by SD HOST (peripheral mapping 13).
int freeChannels[] = { 5, 1 };
#else
int freeChannels[] = { 7, 1 };
#endif
#if defined(DMA_TX_CHANNEL)
freeChannels[0] = DMA_TX_CHANNEL;
#endif
#if defined(DMA_RX_CHANNEL)
freeChannels[1] = DMA_RX_CHANNEL;
#endif
if (freeChannels[0] == freeChannels[1]) FATAL_ERROR("DMA TX and RX channels cannot be the same channel!");
static int nextFreeChannel = 0;
if (nextFreeChannel >= sizeof(freeChannels) / sizeof(freeChannels[0])) FATAL_ERROR("No free DMA channels");
*dmaChannel = freeChannels[nextFreeChannel++];
LOG("Allocated DMA channel %d", *dmaChannel);
*irq = 0;
return 0;
}
void FreeDMAChannel(int channel)
{
volatile DMAChannelRegisterFile *dma = GetDMAChannel(channel);
dma->cb.ti = 0; // Clear the SPI TX & RX permaps for this DMA channel so that we don't think some other program is using these for SPI
}
// Message IDs for different mailbox GPU memory allocation messages
#define MEM_ALLOC_MESSAGE 0x3000c // This message is 3 u32s: numBytes, alignment and flags
#define MEM_FREE_MESSAGE 0x3000f // This message is 1 u32: handle
#define MEM_LOCK_MESSAGE 0x3000d // 1 u32: handle
#define MEM_UNLOCK_MESSAGE 0x3000e // 1 u32: handle
// Memory allocation flags
#define MEM_ALLOC_FLAG_DIRECT (1 << 2) // Allocate uncached memory that bypasses L1 and L2 cache on loads and stores
#define MEM_ALLOC_FLAG_COHERENT (1 << 3) // Non-allocating in L2 but coherent
#define BUS_TO_PHYS(x) ((x) & ~0xC0000000)
#define PHYS_TO_BUS(x) ((x) | 0xC0000000)
#define VIRT_TO_BUS(block, x) ((uintptr_t)(x) - (uintptr_t)((block).virtualAddr) + (block).busAddress)
uint64_t totalGpuMemoryUsed = 0;
// Allocates the given number of bytes in GPU side memory, and returns the virtual address and physical bus address of the allocated memory block.
// The virtual address holds an uncached view to the allocated memory, so writes and reads to that memory address bypass the L1 and L2 caches. Use
// this kind of memory to pass data blocks over to the DMA controller to process.
GpuMemory AllocateUncachedGpuMemory(uint32_t numBytes, const char *reason)
{
GpuMemory mem;
mem.sizeBytes = ALIGN_UP(numBytes, PAGE_SIZE);
uint32_t allocationFlags = MEM_ALLOC_FLAG_DIRECT | MEM_ALLOC_FLAG_COHERENT;
mem.allocationHandle = Mailbox(MEM_ALLOC_MESSAGE, /*size=*/mem.sizeBytes, /*alignment=*/PAGE_SIZE, /*flags=*/allocationFlags);
if (!mem.allocationHandle) FATAL_ERROR("Failed to allocate GPU memory! Try increasing gpu_mem allocation in /boot/config.txt. See https://www.raspberrypi.org/documentation/configuration/config-txt/memory.md");
mem.busAddress = Mailbox(MEM_LOCK_MESSAGE, mem.allocationHandle);
if (!mem.busAddress) FATAL_ERROR("Failed to lock GPU memory!");
mem.virtualAddr = mmap(0, mem.sizeBytes, PROT_READ | PROT_WRITE, MAP_SHARED, mem_fd, BUS_TO_PHYS(mem.busAddress));
if (mem.virtualAddr == MAP_FAILED) FATAL_ERROR("Failed to mmap GPU memory!");
totalGpuMemoryUsed += mem.sizeBytes;
// printf("Allocated %u bytes of GPU memory for %s (bus address=%p). Total GPU memory used: %llu bytes\n", mem.sizeBytes, reason, (void*)mem.busAddress, totalGpuMemoryUsed);
return mem;
}
void FreeUncachedGpuMemory(GpuMemory mem)
{
totalGpuMemoryUsed -= mem.sizeBytes;
munmap(mem.virtualAddr, mem.sizeBytes);
Mailbox(MEM_UNLOCK_MESSAGE, mem.allocationHandle);
Mailbox(MEM_FREE_MESSAGE, mem.allocationHandle);
}
volatile DMAChannelRegisterFile *GetDMAChannel(int channelNumber)
{
if (channelNumber < 0 || channelNumber >= BCM2835_NUM_DMA_CHANNELS)
{
printf("Invalid DMA channel %d specified!\n", channelNumber);
FATAL_ERROR("Invalid DMA channel specified!");
}
return dma0 + channelNumber;
}
void DumpDMAPeripheralMap()
{
for(int i = 0; i < BCM2835_NUM_DMA_CHANNELS; ++i)
{
volatile DMAChannelRegisterFile *channel = GetDMAChannel(i);
printf("DMA channel %d has peripheral map %d (is lite channel: %d, currently active: %d, current control block: %p)\n", i, (channel->cb.ti & BCM2835_DMA_TI_PERMAP_MASK) >> BCM2835_DMA_TI_PERMAP_SHIFT, (channel->cb.debug & BCM2835_DMA_DEBUG_LITE) ? 1 : 0, (channel->cs & BCM2835_DMA_CS_ACTIVE) ? 1 : 0, channel->cbAddr);
}
}
// Verifies that no other program has stomped on the DMA channel that we are using.
void CheckDMAChannelNotStolen(int channelNumber, int expectedPeripheralMap)
{
volatile DMAChannelRegisterFile *channel = GetDMAChannel(channelNumber);
uint32_t peripheralMap = ((channel->cb.ti & BCM2835_DMA_TI_PERMAP_MASK) >> BCM2835_DMA_TI_PERMAP_SHIFT);
if (peripheralMap != expectedPeripheralMap && peripheralMap != 0)
{
DumpDMAPeripheralMap();
printf("DMA channel collision! DMA channel %d was expected to be assigned to our peripheral %d, but something else has assigned it to peripheral %d!\n", channelNumber, expectedPeripheralMap, peripheralMap);
FATAL_ERROR("System is likely unstable now, rebooting is advised.");
}
uint32_t cbAddr = channel->cbAddr;
if (cbAddr && (cbAddr < dmaCb.busAddress || cbAddr >= dmaCb.busAddress + dmaCb.sizeBytes))
{
DumpDMAPeripheralMap();
printf("DMA channel collision! Some other program has submitted a DMA task to our DMA channel %d! (DMA task at unknown control block address %p)\n", channelNumber, cbAddr);
FATAL_ERROR("System is likely unstable now, rebooting is advised.");
}
}
void CheckSPIDMAChannelsNotStolen()
{
CheckDMAChannelNotStolen(dmaTxChannel, BCM2835_DMA_TI_PERMAP_SPI_TX);
CheckDMAChannelNotStolen(dmaRxChannel, BCM2835_DMA_TI_PERMAP_SPI_RX);
}
void ResetDMAChannels()
{
dmaTx->cs = BCM2835_DMA_CS_RESET;
dmaTx->cb.debug = BCM2835_DMA_DEBUG_DMA_READ_ERROR | BCM2835_DMA_DEBUG_DMA_FIFO_ERROR | BCM2835_DMA_DEBUG_READ_LAST_NOT_SET_ERROR;
dmaRx->cs = BCM2835_DMA_CS_RESET;
dmaRx->cb.debug = BCM2835_DMA_DEBUG_DMA_READ_ERROR | BCM2835_DMA_DEBUG_DMA_FIFO_ERROR | BCM2835_DMA_DEBUG_READ_LAST_NOT_SET_ERROR;
}
int InitDMA()
{
#if defined(KERNEL_MODULE)
dma0 = (volatile DMAChannelRegisterFile*)ioremap(BCM2835_PERI_BASE+BCM2835_DMA0_OFFSET, BCM2835_NUM_DMA_CHANNELS*0x100);
#else
dma0 = (volatile DMAChannelRegisterFile*)((uintptr_t)bcm2835 + BCM2835_DMA0_OFFSET);
#endif
#ifdef KERNEL_MODULE_CLIENT
dmaTxChannel = spiTaskMemory->dmaTxChannel;
dmaRxChannel = spiTaskMemory->dmaRxChannel;
#else
int ret = AllocateDMAChannel(&dmaTxChannel, &dmaTxIrq);
if (ret != 0) FATAL_ERROR("Unable to allocate TX DMA channel!");
ret = AllocateDMAChannel(&dmaRxChannel, &dmaRxIrq);
if (ret != 0) FATAL_ERROR("Unable to allocate RX DMA channel!");
printf("Enabling DMA channels Tx:%d and Rx:%d\n", dmaTxChannel, dmaRxChannel);
volatile uint32_t *dmaEnableRegister = (volatile uint32_t *)((uintptr_t)dma0 + BCM2835_DMAENABLE_REGISTER_OFFSET);
// Enable the allocated DMA channels
*dmaEnableRegister |= (1 << dmaTxChannel);
*dmaEnableRegister |= (1 << dmaRxChannel);
#endif
#if !defined(KERNEL_MODULE)
dmaCb = AllocateUncachedGpuMemory(sizeof(DMAControlBlock) * NUM_DMA_CBS, "DMA control blocks");
memset(dmaCb.virtualAddr, 0, dmaCb.sizeBytes); // Some fields of the CBs (debug, reserved) are initialized to zero and assumed to stay so throughout app lifetime.
firstFreeCB = (volatile DMAControlBlock *)dmaCb.virtualAddr;
dmaSourceBuffer = AllocateUncachedGpuMemory(SHARED_MEMORY_SIZE*2, "DMA source data");
dmaSourceEnd = (volatile uint8_t *)dmaSourceBuffer.virtualAddr;
dmaConstantData = AllocateUncachedGpuMemory(2*sizeof(uint32_t), "DMA constant data");
uint32_t *constantData = (uint32_t *)dmaConstantData.virtualAddr;
constantData[0] = BCM2835_SPI0_CS_DMAEN; // constantData[0] is for disableTransferActive task
constantData[1] = BCM2835_DMA_CS_ACTIVE | BCM2835_DMA_CS_END; // constantData[1] is for startDMATxChannel task
#endif
LOG("DMA hardware register file is at ptr: %p, using DMA TX channel: %d and DMA RX channel: %d", dma0, dmaTxChannel, dmaRxChannel);
if (!dma0) FATAL_ERROR("Failed to map DMA!");
dmaTx = GetDMAChannel(dmaTxChannel);
dmaRx = GetDMAChannel(dmaRxChannel);
LOG("DMA hardware TX channel register file is at ptr: %p, DMA RX channel register file is at ptr: %p", dmaTx, dmaRx);
int dmaTxPeripheralMap = (dmaTx->cb.ti & BCM2835_DMA_TI_PERMAP_MASK) >> BCM2835_DMA_TI_PERMAP_SHIFT;
if (dmaTxPeripheralMap != 0 && dmaTxPeripheralMap != BCM2835_DMA_TI_PERMAP_SPI_TX)
{
DumpDMAPeripheralMap();
LOG("DMA TX channel %d was assigned another peripheral map %d!", dmaTxChannel, dmaTxPeripheralMap);
FATAL_ERROR("DMA TX channel was assigned another peripheral map!");
}
if (dmaTx->cbAddr != 0 && (dmaTx->cs & BCM2835_DMA_CS_ACTIVE))
FATAL_ERROR("DMA TX channel was in use!");
int dmaRxPeripheralMap = (dmaRx->cb.ti & BCM2835_DMA_TI_PERMAP_MASK) >> BCM2835_DMA_TI_PERMAP_SHIFT;
if (dmaRxPeripheralMap != 0 && dmaRxPeripheralMap != BCM2835_DMA_TI_PERMAP_SPI_RX)
{
LOG("DMA RX channel %d was assigned another peripheral map %d!", dmaRxChannel, dmaRxPeripheralMap);
DumpDMAPeripheralMap();
FATAL_ERROR("DMA RX channel was assigned another peripheral map!");
}
if (dmaRx->cbAddr != 0 && (dmaRx->cs & BCM2835_DMA_CS_ACTIVE))
FATAL_ERROR("DMA RX channel was in use!");
if ((dmaRx->cb.debug & BCM2835_DMA_DEBUG_LITE) != 0)
FATAL_ERROR("DMA RX channel cannot be a lite channel, because to get best performance we want to use BCM2835_DMA_TI_DEST_IGNORE DMA operation mode that lite DMA channels do not have. (Try using DMA RX channel value < 7)");
LOG("Resetting DMA channels for use");
ResetDMAChannels();
// TODO: Set up IRQ
LOG("DMA all set up");
return 0;
}
// Debugging functions to introspect SPI and DMA hardware registers:
void DumpCS(uint32_t reg)
{
PRINT_FLAG(BCM2835_DMA_CS_RESET);
PRINT_FLAG(BCM2835_DMA_CS_ABORT);
PRINT_FLAG(BCM2835_DMA_CS_DISDEBUG);
PRINT_FLAG(BCM2835_DMA_CS_WAIT_FOR_OUTSTANDING_WRITES);
PRINT_FLAG(BCM2835_DMA_CS_PANIC_PRIORITY);
PRINT_FLAG(BCM2835_DMA_CS_PRIORITY);
PRINT_FLAG(BCM2835_DMA_CS_ERROR);
PRINT_FLAG(BCM2835_DMA_CS_WAITING_FOR_OUTSTANDING_WRITES);
PRINT_FLAG(BCM2835_DMA_CS_DREQ_STOPS_DMA);
PRINT_FLAG(BCM2835_DMA_CS_PAUSED);
PRINT_FLAG(BCM2835_DMA_CS_DREQ);
PRINT_FLAG(BCM2835_DMA_CS_INT);
PRINT_FLAG(BCM2835_DMA_CS_END);
PRINT_FLAG(BCM2835_DMA_CS_ACTIVE);
}
void DumpDebug(uint32_t reg)
{
PRINT_FLAG(BCM2835_DMA_DEBUG_LITE);
PRINT_FLAG(BCM2835_DMA_DEBUG_VERSION);
PRINT_FLAG(BCM2835_DMA_DEBUG_DMA_STATE);
PRINT_FLAG(BCM2835_DMA_DEBUG_DMA_ID);
PRINT_FLAG(BCM2835_DMA_DEBUG_DMA_OUTSTANDING_WRITES);
PRINT_FLAG(BCM2835_DMA_DEBUG_DMA_READ_ERROR);
PRINT_FLAG(BCM2835_DMA_DEBUG_DMA_FIFO_ERROR);
PRINT_FLAG(BCM2835_DMA_DEBUG_READ_LAST_NOT_SET_ERROR);
}
void DumpTI(uint32_t reg)
{
PRINT_FLAG(BCM2835_DMA_TI_NO_WIDE_BURSTS);
PRINT_FLAG(BCM2835_DMA_TI_WAITS);
#define BCM2835_DMA_TI_PERMAP_MASK_SHIFT 16
PRINT_FLAG(BCM2835_DMA_TI_PERMAP_MASK);
// PRINT_FLAG(BCM2835_DMA_TI_BURST_LENGTH);
PRINT_FLAG(BCM2835_DMA_TI_SRC_IGNORE);
PRINT_FLAG(BCM2835_DMA_TI_SRC_DREQ);
PRINT_FLAG(BCM2835_DMA_TI_SRC_WIDTH);
PRINT_FLAG(BCM2835_DMA_TI_SRC_INC);
PRINT_FLAG(BCM2835_DMA_TI_DEST_IGNORE);
PRINT_FLAG(BCM2835_DMA_TI_DEST_DREQ);
PRINT_FLAG(BCM2835_DMA_TI_DEST_WIDTH);
PRINT_FLAG(BCM2835_DMA_TI_DEST_INC);
PRINT_FLAG(BCM2835_DMA_TI_WAIT_RESP);
PRINT_FLAG(BCM2835_DMA_TI_TDMODE);
PRINT_FLAG(BCM2835_DMA_TI_INTEN);
}
#define DMA_DMA0_CB_PHYS_ADDRESS 0x7E007000
#define DMA_SPI_CS_PHYS_ADDRESS 0x7E204000
#define DMA_SPI_FIFO_PHYS_ADDRESS 0x7E204004
#define DMA_SPI_DLEN_PHYS_ADDRESS 0x7E20400C
#define DMA_GPIO_SET_PHYS_ADDRESS 0x7E20001C
#define DMA_GPIO_CLEAR_PHYS_ADDRESS 0x7E200028
void DumpDMAState()
{
printf("---SPI:---\n");
DumpSPICS(spi->cs);
printf("---DMATX CS:---\n");
DumpCS(dmaTx->cs);
printf("---DMATX TI:---\n");
DumpTI(dmaTx->cb.ti);
printf("---DMATX DEBUG:---\n");
DumpDebug(dmaTx->cb.debug);
printf("****** DMATX cbAddr: %p\n", dmaTx->cbAddr);
printf("---DMARX CS:---\n");
DumpCS(dmaRx->cs);
printf("---DMARX TI:---\n");
DumpTI(dmaRx->cb.ti);
printf("---DMARX DEBUG:---\n");
DumpDebug(dmaRx->cb.debug);
printf("****** DMARX cbAddr: %p\n", dmaRx->cbAddr);
}
extern volatile bool programRunning;
void WaitForDMAFinished()
{
int spins = 0;
uint64_t t0 = tick();
while((dmaTx->cs & BCM2835_DMA_CS_ACTIVE) && programRunning)
{
usleep(100);
if (tick() - t0 > 2000000)
{
printf("TX stalled\n");
DumpDMAState();
exit(1);
}
}
spins = 0;
t0 = tick();
while((dmaRx->cs & BCM2835_DMA_CS_ACTIVE) && programRunning)
{
usleep(100);
if (tick() - t0 > 2000000)
{
printf("RX stalled\n");
DumpDMAState();
exit(1);
}
}
dmaSendTail = 0;
dmaRecvTail = 0;
}
#ifdef ALL_TASKS_SHOULD_DMA
// This function does a memcpy from one source buffer to two destination buffers simultaneously.
// It saves a lot of time on ARMv6 by avoiding to have to do two separate memory copies, because the ARMv6 L1 cache is so tiny (4K) that it cannot fit a whole framebuffer
// in memory at a time. Streaming through it only once instead of twice helps memory bandwidth immensely, this is profiled to be ~4x faster than a pair of memcpys or a simple CPU loop.
// In addition, this does a little endian->big endian conversion when copying data out to dstDma.
static void memcpy_to_dma_and_prev_framebuffer(uint16_t *dstDma, uint16_t **dstPrevFramebuffer, uint16_t **srcFramebuffer, int numBytes, int *taskStartX, int width, int stride)
{
int strideEnd = stride - width*2;
int xLeft = width-*taskStartX;
uint16_t *Src = *srcFramebuffer;
uint16_t *Dst1 = *dstPrevFramebuffer;
// TODO: Do the loops in aligned order with unaligned head and tail separate, and ensure that dstDma, dstPrevFramebuffer and srcFramebuffer are in same alignment phase.
asm volatile(
"start_%=:\n"
"ldrd r0, r1, [%[srcFramebuffer]], #8\n"
"pld [%[srcFramebuffer], #248]\n"
"strd r0, r1, [%[dstPrevFramebuffer]], #8\n"
"rev16 r0, r0\n"
"rev16 r1, r1\n"
"strd r0, r1, [%[dstDma]], #8\n"
"ldrd r0, r1, [%[srcFramebuffer]], #8\n"
"strd r0, r1, [%[dstPrevFramebuffer]], #8\n"
"rev16 r0, r0\n"
"rev16 r1, r1\n"
"strd r0, r1, [%[dstDma]], #8\n"
"ldrd r0, r1, [%[srcFramebuffer]], #8\n"
"strd r0, r1, [%[dstPrevFramebuffer]], #8\n"
"rev16 r0, r0\n"
"rev16 r1, r1\n"
"strd r0, r1, [%[dstDma]], #8\n"
"ldrd r0, r1, [%[srcFramebuffer]], #8\n"
"strd r0, r1, [%[dstPrevFramebuffer]], #8\n"
"rev16 r0, r0\n"
"rev16 r1, r1\n"
"strd r0, r1, [%[dstDma]], #8\n"
"subs %[xLeft], %[xLeft], #16\n"
"addls %[xLeft], %[xLeft], %[width]\n"
"addls %[dstPrevFramebuffer], %[dstPrevFramebuffer], %[strideEnd]\n"
"addls %[srcFramebuffer], %[srcFramebuffer], %[strideEnd]\n"
"subs %[numBytes], %[numBytes], #32\n"
"bhi start_%=\n"
: [dstDma]"+r"(dstDma), [dstPrevFramebuffer]"+r"(Dst1), [srcFramebuffer]"+r"(Src), [xLeft]"+r"(xLeft), [numBytes]"+r"(numBytes)
: [strideEnd]"r"(strideEnd), [width]"r"(width)
: "r0", "r1", "memory", "cc"
);
*taskStartX = width - xLeft;
*srcFramebuffer = Src;
*dstPrevFramebuffer = Dst1;
}
static void memcpy_to_dma_and_prev_framebuffer_in_c(uint16_t *dstDma, uint16_t **dstPrevFramebuffer, uint16_t **srcFramebuffer, int numBytes, int *taskStartX, int width, int stride)
{
static bool performanceWarningPrinted = false;
if (!performanceWarningPrinted)
{
printf("Performance warning: using slow memcpy_to_dma_and_prev_framebuffer_in_c() function. Check conditions in display.h that enable OFFLOAD_PIXEL_COPY_TO_DMA_CPP and configure to use that instead.\n");
performanceWarningPrinted = true;
}
int numPixels = numBytes>>1;
int endStridePixels = (stride>>1) - width;
uint16_t *prevData = *dstPrevFramebuffer;
uint16_t *data = *srcFramebuffer;
for(int i = 0; i < numPixels; ++i)
{
*prevData++ = *data;
dstDma[i] = __builtin_bswap16(*data++);
if (++*taskStartX >= width)
{
*taskStartX = 0;
data += endStridePixels;
prevData += endStridePixels;
}
}
*srcFramebuffer = data;
*dstPrevFramebuffer = prevData;
}
#if defined(ALL_TASKS_SHOULD_DMA) && defined(SPI_3WIRE_PROTOCOL)
// Bug: there is something about the chained DMA transfer mechanism that makes write window coordinate set commands not go through properly
// on 3-wire displays, but do not yet know what. (Remove this #error statement to debug)
#error ALL_TASKS_SHOULD_DMA and SPI_3WIRE_PROTOCOL are currently not mutually compatible!
#endif
#if defined(OFFLOAD_PIXEL_COPY_TO_DMA_CPP) && defined(SPI_3WIRE_PROTOCOL)
// We would have to convert 8-bit tasks to 9-bit tasks immediately after offloaded memcpy has been done below to implement this.
#error OFFLOAD_PIXEL_COPY_TO_DMA_CPP and SPI_3WIRE_PROTOCOL are not mutually compatible!
#endif
void SPIDMATransfer(SPITask *task)
{
// There is a limit to how many bytes can be sent in one DMA-based SPI task, so if the task
// is larger than this, we'll split the send into multiple individual DMA SPI transfers
// and chain them together. This should be a multiple of 32 bytes to keep tasks cache aligned on ARMv6.
#define MAX_DMA_SPI_TASK_SIZE 65504
const int numDMASendTasks = (task->PayloadSize() + MAX_DMA_SPI_TASK_SIZE - 1) / MAX_DMA_SPI_TASK_SIZE;
volatile uint32_t *dmaData = (volatile uint32_t *)GrabFreeDMASourceBytes(4*(numDMASendTasks-1)+4*numDMASendTasks+task->PayloadSize());
volatile uint32_t *setDMATxAddressData = dmaData;
volatile uint32_t *txData = dmaData+numDMASendTasks-1;
volatile DMAControlBlock *cb = GrabFreeCBs(numDMASendTasks*5-3);
volatile DMAControlBlock *rxTail = 0;
volatile DMAControlBlock *tx0 = &cb[0];
volatile DMAControlBlock *rx0 = &cb[1];
#ifdef OFFLOAD_PIXEL_COPY_TO_DMA_CPP
uint8_t *data = task->fb;
uint8_t *prevData = task->prevFb;
const bool taskAndFramebufferSizesCompatibleWithTightMemcpy = (task->PayloadSize() % 32 == 0) && (task->width % 16 == 0);
#else
uint8_t *data = task->PayloadStart();
#endif
int bytesLeft = task->PayloadSize();
int taskStartX = 0;
while(bytesLeft > 0)
{
int sendSize = MIN(bytesLeft, MAX_DMA_SPI_TASK_SIZE);
bytesLeft -= sendSize;
volatile DMAControlBlock *tx = cb++;
txData[0] = BCM2835_SPI0_CS_TA | DISPLAY_SPI_DRIVE_SETTINGS | (sendSize << 16); // The first four bytes written to the SPI data register control the DLEN and CS,CPOL,CPHA settings.
// This is really sad: we must do a memcpy to prepare for DMA controller to be able to do a memcpy. The reason for this is that the DMA source memory area must be in cache bypassing
// region of memory, which the SPI source ring buffer is not. It could be allocated to be so however, but bypassing the caches on the SPI ring buffer would cause a massive -51.5%
// profiled overall performance drop (tested on Pi3B+ and Tontec 3.5" 480x320 display on gpu test pattern, see branch non_intermediate_memcpy_for_dma). Therefore just keep doing
// this memcpy() to prepare for DMA to do its memcpy(), as it is faster overall. (If there was a way to map same physical memory to virtual address space twice, once cached, and
// another time uncached, and have writes bypass the cache and only write combine, but have reads follow the cache, then it might work without a perf hit, but not at all sure if
// that would be technically possible)
uint16_t *txPtr = (uint16_t*)(txData+1);
// If task->prevFb is present, the DMA backend is responsible for streaming pixel data from current framebuffer to old framebuffer, and the DMA task buffer.
// If not present, then that preparation has been already done by the caller.
#ifdef OFFLOAD_PIXEL_COPY_TO_DMA_CPP
if (prevData)
{
// For 2D pixel data, do a "everything in one pass"
if (taskAndFramebufferSizesCompatibleWithTightMemcpy)
memcpy_to_dma_and_prev_framebuffer((uint16_t*)txPtr, (uint16_t**)&prevData, (uint16_t**)&data, sendSize, &taskStartX, task->width, gpuFramebufferScanlineStrideBytes);
else
memcpy_to_dma_and_prev_framebuffer_in_c((uint16_t*)txPtr, (uint16_t**)&prevData, (uint16_t**)&data, sendSize, &taskStartX, task->width, gpuFramebufferScanlineStrideBytes);
}
else
#endif
{
memcpy(txPtr, data, sendSize);
data += sendSize;
}
tx->ti = BCM2835_DMA_TI_PERMAP(BCM2835_DMA_TI_PERMAP_SPI_TX) | BCM2835_DMA_TI_DEST_DREQ | BCM2835_DMA_TI_SRC_INC | BCM2835_DMA_TI_WAIT_RESP;
tx->src = VIRT_TO_BUS(dmaSourceBuffer, txData);
tx->dst = DMA_SPI_FIFO_PHYS_ADDRESS; // Write out to the SPI peripheral
tx->len = 4+sendSize;
tx->next = 0;
txData += 1+sendSize/4;
volatile DMAControlBlock *rx = cb++;
rx->ti = BCM2835_DMA_TI_PERMAP(BCM2835_DMA_TI_PERMAP_SPI_RX) | BCM2835_DMA_TI_SRC_DREQ | BCM2835_DMA_TI_DEST_IGNORE;
rx->src = DMA_SPI_FIFO_PHYS_ADDRESS;
rx->dst = 0;
rx->len = sendSize;
rx->next = 0;
if (rxTail)
{
volatile DMAControlBlock *setDMATxAddress = cb++;
volatile DMAControlBlock *disableTransferActive = cb++;
volatile DMAControlBlock *startDMATxChannel = cb++;
rxTail->next = VIRT_TO_BUS(dmaCb, setDMATxAddress);
setDMATxAddressData[0] = VIRT_TO_BUS(dmaCb, tx);
setDMATxAddress->ti = BCM2835_DMA_TI_SRC_INC | BCM2835_DMA_TI_DEST_INC | BCM2835_DMA_TI_WAIT_RESP;
setDMATxAddress->src = VIRT_TO_BUS(dmaSourceBuffer, setDMATxAddressData);
setDMATxAddress->dst = DMA_DMA0_CB_PHYS_ADDRESS + dmaTxChannel*0x100 + 4;
setDMATxAddress->len = 4;
setDMATxAddress->next = VIRT_TO_BUS(dmaCb, disableTransferActive);
++setDMATxAddressData;
disableTransferActive->ti = BCM2835_DMA_TI_SRC_INC | BCM2835_DMA_TI_DEST_INC | BCM2835_DMA_TI_WAIT_RESP;
disableTransferActive->src = dmaConstantData.busAddress;
disableTransferActive->dst = DMA_SPI_CS_PHYS_ADDRESS;
disableTransferActive->len = 4;
disableTransferActive->next = VIRT_TO_BUS(dmaCb, startDMATxChannel);
startDMATxChannel->ti = BCM2835_DMA_TI_SRC_INC | BCM2835_DMA_TI_DEST_INC | BCM2835_DMA_TI_WAIT_RESP;
startDMATxChannel->src = dmaConstantData.busAddress+4;
startDMATxChannel->dst = DMA_DMA0_CB_PHYS_ADDRESS + dmaTxChannel*0x100;
startDMATxChannel->len = 4;
startDMATxChannel->next = VIRT_TO_BUS(dmaCb, rx);
}
rxTail = rx;
}
static uint64_t taskStartTime = 0;
static int pendingTaskBytes = 1;
double pendingTaskUSecs = pendingTaskBytes * spiUsecsPerByte;
pendingTaskUSecs -= tick() - taskStartTime;
if (pendingTaskUSecs > 70)
usleep(pendingTaskUSecs-70);
uint64_t dmaTaskStart = tick();
CheckSPIDMAChannelsNotStolen();
while((dmaTx->cs & BCM2835_DMA_CS_ACTIVE) && programRunning)
{
usleep(250);
CheckSPIDMAChannelsNotStolen();
if (tick() - dmaTaskStart > 5000000)
{
DumpDMAState();
FATAL_ERROR("DMA TX channel has stalled!");
}
}
while((dmaRx->cs & BCM2835_DMA_CS_ACTIVE) && programRunning)
{
usleep(250);
CheckSPIDMAChannelsNotStolen();
if (tick() - dmaTaskStart > 5000000)
{
DumpDMAState();
FATAL_ERROR("DMA RX channel has stalled!");
}
}
if (!programRunning) return;
pendingTaskBytes = task->PayloadSize();
// First send the SPI command byte in Polled SPI mode
spi->cs = BCM2835_SPI0_CS_TA | BCM2835_SPI0_CS_CLEAR | DISPLAY_SPI_DRIVE_SETTINGS;
#ifndef SPI_3WIRE_PROTOCOL
CLEAR_GPIO(GPIO_TFT_DATA_CONTROL);
#ifdef DISPLAY_SPI_BUS_IS_16BITS_WIDE
spi->fifo = 0;
spi->fifo = task->cmd;
while(!(spi->cs & (BCM2835_SPI0_CS_DONE))) /*nop*/;
// spi->fifo; // Currently no need to flush these, the clear below clears the rx queue.
// spi->fifo;
#else
spi->fifo = task->cmd;
while(!(spi->cs & (BCM2835_SPI0_CS_RXD|BCM2835_SPI0_CS_DONE))) /*nop*/;
// spi->fifo; // Currently no need to flush this, the clear below clears the rx queue.
#endif
SET_GPIO(GPIO_TFT_DATA_CONTROL);
#endif
spi->cs = BCM2835_SPI0_CS_DMAEN | BCM2835_SPI0_CS_CLEAR | DISPLAY_SPI_DRIVE_SETTINGS;
dmaTx->cbAddr = VIRT_TO_BUS(dmaCb, tx0);
dmaRx->cbAddr = VIRT_TO_BUS(dmaCb, rx0);
__sync_synchronize();
dmaTx->cs = BCM2835_DMA_CS_ACTIVE | BCM2835_DMA_CS_END;
dmaRx->cs = BCM2835_DMA_CS_ACTIVE | BCM2835_DMA_CS_END;
taskStartTime = tick();
}
#else
void SPIDMATransfer(SPITask *task)
{
// Transition the SPI peripheral to enable the use of DMA
spi->cs = BCM2835_SPI0_CS_DMAEN | BCM2835_SPI0_CS_CLEAR | DISPLAY_SPI_DRIVE_SETTINGS;
uint32_t *headerAddr = task->DmaSpiHeaderAddress();
*headerAddr = BCM2835_SPI0_CS_TA | DISPLAY_SPI_DRIVE_SETTINGS | (task->PayloadSize() << 16); // The first four bytes written to the SPI data register control the DLEN and CS,CPOL,CPHA settings.
// TODO: Ideally we would be able to directly perform the DMA from the SPI ring buffer from 'task' pointer. However
// that pointer is shared to userland, and it is proving troublesome to make it both userland-writable as well as cache-bypassing DMA coherent.
// Therefore these two memory areas are separate for now, and we memcpy() from SPI ring buffer to an intermediate 'dmaSourceMemory' memory area to perform
// the DMA transfer. Is there a way to avoid this intermediate buffer? That would improve performance a bit.
memcpy(dmaSourceBuffer.virtualAddr, headerAddr, task->PayloadSize() + 4);
volatile DMAControlBlock *cb = (volatile DMAControlBlock *)dmaCb.virtualAddr;
volatile DMAControlBlock *txcb = &cb[0];
txcb->ti = BCM2835_DMA_TI_PERMAP(BCM2835_DMA_TI_PERMAP_SPI_TX) | BCM2835_DMA_TI_DEST_DREQ | BCM2835_DMA_TI_SRC_INC | BCM2835_DMA_TI_WAIT_RESP;
txcb->src = dmaSourceBuffer.busAddress;
txcb->dst = DMA_SPI_FIFO_PHYS_ADDRESS; // Write out to the SPI peripheral
txcb->len = task->PayloadSize() + 4;
txcb->stride = 0;
txcb->next = 0;
txcb->debug = 0;
txcb->reserved = 0;
dmaTx->cbAddr = dmaCb.busAddress;
volatile DMAControlBlock *rxcb = &cb[1];
rxcb->ti = BCM2835_DMA_TI_PERMAP(BCM2835_DMA_TI_PERMAP_SPI_RX) | BCM2835_DMA_TI_SRC_DREQ | BCM2835_DMA_TI_DEST_IGNORE;
rxcb->src = DMA_SPI_FIFO_PHYS_ADDRESS;
rxcb->dst = 0;
rxcb->len = task->PayloadSize();
rxcb->stride = 0;
rxcb->next = 0;
rxcb->debug = 0;
rxcb->reserved = 0;
dmaRx->cbAddr = dmaCb.busAddress + sizeof(DMAControlBlock);
__sync_synchronize();
dmaTx->cs = BCM2835_DMA_CS_ACTIVE;
dmaRx->cs = BCM2835_DMA_CS_ACTIVE;
__sync_synchronize();
double pendingTaskUSecs = task->PayloadSize() * spiUsecsPerByte;
if (pendingTaskUSecs > 70)
usleep(pendingTaskUSecs-70);
uint64_t dmaTaskStart = tick();
CheckSPIDMAChannelsNotStolen();
while((dmaTx->cs & BCM2835_DMA_CS_ACTIVE))
{
CheckSPIDMAChannelsNotStolen();
if (tick() - dmaTaskStart > 5000000)
FATAL_ERROR("DMA TX channel has stalled!");
}
while((dmaRx->cs & BCM2835_DMA_CS_ACTIVE))
{
CheckSPIDMAChannelsNotStolen();
if (tick() - dmaTaskStart > 5000000)
FATAL_ERROR("DMA RX channel has stalled!");
}
__sync_synchronize();
spi->cs = BCM2835_SPI0_CS_TA | BCM2835_SPI0_CS_CLEAR | DISPLAY_SPI_DRIVE_SETTINGS;
__sync_synchronize();
}
#endif
void DeinitDMA(void)
{
WaitForDMAFinished();
ResetDMAChannels();
FreeUncachedGpuMemory(dmaSourceBuffer);
FreeUncachedGpuMemory(dmaCb);
FreeUncachedGpuMemory(dmaConstantData);
if (dmaTxChannel != -1)
{
FreeDMAChannel(dmaTxChannel);
dmaTxChannel = -1;
}
if (dmaRxChannel != -1)
{
FreeDMAChannel(dmaRxChannel);
dmaRxChannel = -1;
}
}
#endif // ~USE_DMA_TRANSFERS