-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
45 lines (35 loc) · 1.76 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import torch
from datasets import load_dataset
from PIL import Image
from torch.utils.data import Dataset
from torchvision.transforms import ToTensor
class CustomDataset(Dataset):
def __init__(
self, watermark_dataset_id, original_dataset_id, split, transform=None
):
"""
Args:
watermark_dataset_id (string): Hugging Face dataset identifier for the watermarked images.
original_dataset_id (string): Hugging Face dataset identifier for the original images.
split (string): Split of the dataset, e.g., 'train', 'test'.
transform (callable, optional): Optional transform to be applied on a sample.
"""
self.watermark_dataset = load_dataset(watermark_dataset_id, split=split)
self.original_dataset = load_dataset(original_dataset_id, split=split)
self.transform = transform
def __len__(self):
return len(self.watermark_dataset)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
watermark_image = self.watermark_dataset[idx]["image"]
original_image = self.original_dataset[idx]["image"]
if self.transform:
watermark_image = self.transform(watermark_image)
original_image = self.transform(original_image)
return watermark_image, original_image
# Natural usage in main training script
# transforms = ToTensor() # This scales the pixel values to the [0, 1] range
# train_dataset = CustomDataset("transcendingvictor/watermark1_flowers_dataset", "transcendingvictor/original_flowers_dataset", "train", transforms)
# val_dataset = CustomDataset("transcendingvictor/watermark1_flowers_dataset", "transcendingvictor/original_flowers_dataset", "validation", transforms)