Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Atomic rmw mask #5231

Draft
wants to merge 3 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,13 @@ Operation *mlir::triton::predicateOp(RewriterBase &rewriter, Operation *op,
storeOp.getMaskMutable().assign(mask);
return op;
}
if (auto atomicRMWOp = dyn_cast<tt::AtomicRMWOp>(op)) {
rewriter.setInsertionPoint(atomicRMWOp);
Value mask = getPredMask(rewriter, atomicRMWOp.getPtr().getType(),
atomicRMWOp.getMask(), pred);
atomicRMWOp.getMaskMutable().assign(mask);
return op;
}

assert("don't know how to predicate this op" && false);
return op;
Expand Down
64 changes: 64 additions & 0 deletions test/TritonGPU/loop-pipeline-hip.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -263,3 +263,67 @@ module attributes {"triton_gpu.num-ctas" = 1 : i32, "triton_gpu.num-warps" = 4 :
tt.return
}
}

// -----

// Check that the stream pipeliner updates atomic op in the k-loop correctly
// CHECK-LABEL: _triton_gemm_kernel_atomic_rmw
// CHECK: tt.atomic_rmw fadd, acq_rel, gpu
#blocked = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [8, 8], warpsPerCTA = [4, 1], order = [1, 0]}>
#mma = #triton_gpu.amd_mfma<{versionMajor = 3, versionMinor = 0, warpsPerCTA = [4, 1], instrShape = [32, 32], isTransposed = true}>
module attributes {"triton_gpu.num-ctas" = 1 : i32, "triton_gpu.num-warps" = 4 : i32, triton_gpu.target = "hip:gfx942", "triton_gpu.threads-per-warp" = 64 : i32} {
tt.func public @_triton_gemm_kernel_atomic_rmw(%arg0: !tt.ptr<f16> {tt.divisibility = 16 : i32, tt.pointer_range = 32 : i32} loc(unknown), %arg1: !tt.ptr<f16> {tt.divisibility = 16 : i32, tt.pointer_range = 32 : i32} loc(unknown), %arg2: !tt.ptr<f16> {tt.divisibility = 16 : i32, tt.pointer_range = 32 : i32} loc(unknown), %arg3: i32 {tt.divisibility = 16 : i32} loc(unknown), %arg4: i32 {tt.divisibility = 16 : i32} loc(unknown)) attributes {noinline = false} {
%cst = arith.constant dense<32> : tensor<32x32xi32, #blocked>
%c0_i32 = arith.constant 0 : i32
%c1_i32 = arith.constant 1 : i32
%c31_i32 = arith.constant 31 : i32
%c32_i32 = arith.constant 32 : i32
%cst_0 = arith.constant dense<0.000000e+00> : tensor<32x32xf32, #mma>
%0 = tt.make_range {end = 32 : i32, start = 0 : i32} : tensor<32xi32, #triton_gpu.slice<{dim = 1, parent = #blocked}>>
%1 = tt.expand_dims %0 {axis = 1 : i32} : tensor<32xi32, #triton_gpu.slice<{dim = 1, parent = #blocked}>> -> tensor<32x1xi32, #blocked>
%2 = tt.splat %arg4 : i32 -> tensor<32x1xi32, #blocked>
%3 = arith.muli %1, %2 : tensor<32x1xi32, #blocked>
%4 = tt.make_range {end = 32 : i32, start = 0 : i32} : tensor<32xi32, #triton_gpu.slice<{dim = 0, parent = #blocked}>>
%5 = tt.expand_dims %4 {axis = 0 : i32} : tensor<32xi32, #triton_gpu.slice<{dim = 0, parent = #blocked}>> -> tensor<1x32xi32, #blocked>
%6 = tt.broadcast %3 : tensor<32x1xi32, #blocked> -> tensor<32x32xi32, #blocked>
%7 = tt.broadcast %5 : tensor<1x32xi32, #blocked> -> tensor<32x32xi32, #blocked>
%8 = arith.addi %6, %7 : tensor<32x32xi32, #blocked>
%9 = tt.splat %arg0 : !tt.ptr<f16> -> tensor<32x32x!tt.ptr<f16>, #blocked>
%10 = tt.addptr %9, %8 : tensor<32x32x!tt.ptr<f16>, #blocked>, tensor<32x32xi32, #blocked>
%11 = tt.splat %arg1 : !tt.ptr<f16> -> tensor<32x32x!tt.ptr<f16>, #blocked>
%12 = tt.addptr %11, %8 : tensor<32x32x!tt.ptr<f16>, #blocked>, tensor<32x32xi32, #blocked>
%13 = tt.splat %arg2 : !tt.ptr<f16> -> tensor<32x1x!tt.ptr<f16>, #blocked>
%14 = tt.addptr %13, %3 : tensor<32x1x!tt.ptr<f16>, #blocked>, tensor<32x1xi32, #blocked>
%15 = tt.broadcast %14 : tensor<32x1x!tt.ptr<f16>, #blocked> -> tensor<32x32x!tt.ptr<f16>, #blocked>
%16 = tt.addptr %15, %7 : tensor<32x32x!tt.ptr<f16>, #blocked>, tensor<32x32xi32, #blocked>
%17 = tt.splat %arg3 : i32 -> tensor<32x1xi32, #blocked>
%18 = arith.cmpi slt, %1, %17 : tensor<32x1xi32, #blocked>
%19 = tt.splat %arg3 : i32 -> tensor<1x32xi32, #blocked>
%20 = arith.cmpi slt, %5, %19 : tensor<1x32xi32, #blocked>
%21 = tt.broadcast %18 : tensor<32x1xi1, #blocked> -> tensor<32x32xi1, #blocked>
%22 = tt.broadcast %20 : tensor<1x32xi1, #blocked> -> tensor<32x32xi1, #blocked>
%23 = arith.andi %21, %22 : tensor<32x32xi1, #blocked>
%24 = arith.addi %arg3, %c31_i32 : i32
%25 = arith.divsi %24, %c32_i32 : i32
%26 = arith.muli %arg4, %c32_i32 : i32
%27 = tt.splat %26 : i32 -> tensor<32x32xi32, #blocked>
%28:3 = scf.for %arg5 = %c0_i32 to %25 step %c1_i32 iter_args(%arg6 = %cst_0, %arg7 = %10, %arg8 = %12) -> (tensor<32x32xf32, #mma>, tensor<32x32x!tt.ptr<f16>, #blocked>, tensor<32x32x!tt.ptr<f16>, #blocked>) : i32 {
%32 = tt.load %arg7 : tensor<32x32x!tt.ptr<f16>, #blocked>
%33 = tt.load %arg8 : tensor<32x32x!tt.ptr<f16>, #blocked>
%34 = triton_gpu.convert_layout %32 : tensor<32x32xf16, #blocked> -> tensor<32x32xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma, kWidth = 4}>>
%35 = triton_gpu.convert_layout %33 : tensor<32x32xf16, #blocked> -> tensor<32x32xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma, kWidth = 4}>>
%36 = tt.dot %34, %35, %arg6 : tensor<32x32xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma, kWidth = 4}>> * tensor<32x32xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma, kWidth = 4}>> -> tensor<32x32xf32, #mma>
%37 = tt.addptr %arg7, %cst : tensor<32x32x!tt.ptr<f16>, #blocked>, tensor<32x32xi32, #blocked>
%38 = tt.addptr %arg8, %27 : tensor<32x32x!tt.ptr<f16>, #blocked>, tensor<32x32xi32, #blocked>
%39 = arith.truncf %36 : tensor<32x32xf32, #mma> to tensor<32x32xf16, #mma>
%40 = triton_gpu.convert_layout %39 : tensor<32x32xf16, #mma> -> tensor<32x32xf16, #blocked>
%41 = tt.atomic_rmw fadd, acq_rel, gpu, %16, %40, %23 : (tensor<32x32x!tt.ptr<f16>, #blocked>, tensor<32x32xf16, #blocked>, tensor<32x32xi1, #blocked>) -> tensor<32x32xf16, #blocked>
scf.yield %36, %37, %38 : tensor<32x32xf32, #mma>, tensor<32x32x!tt.ptr<f16>, #blocked>, tensor<32x32x!tt.ptr<f16>, #blocked>
}
%29 = arith.truncf %28#0 : tensor<32x32xf32, #mma> to tensor<32x32xf16, #mma>
%30 = triton_gpu.convert_layout %16 : tensor<32x32x!tt.ptr<f16>, #blocked> -> tensor<32x32x!tt.ptr<f16>, #mma>
%31 = triton_gpu.convert_layout %23 : tensor<32x32xi1, #blocked> -> tensor<32x32xi1, #mma>
tt.store %30, %29, %31 : tensor<32x32x!tt.ptr<f16>, #mma>
tt.return
}
}