diff --git a/ext/TrixiConvexECOSExt.jl b/ext/TrixiConvexECOSExt.jl index 52d83d867d..f3bfff7344 100644 --- a/ext/TrixiConvexECOSExt.jl +++ b/ext/TrixiConvexECOSExt.jl @@ -86,7 +86,7 @@ function stability_polynomials_PERK4!(pnoms, num_stage_evals, pnoms += (k2 * view(normalized_powered_eigvals_scaled, :, k + 4) * gamma[k] + k1 * view(normalized_powered_eigvals_scaled, :, k + 5) * - gamma[k] * (k + 5)) # Undo normalization of the second summand + gamma[k] * (k + 5)) # Ensure same normalization of both summands end # For optimization only the maximum is relevant @@ -135,16 +135,16 @@ function Trixi.bisect_stability_polynomial(consistency_order, num_eig_vals, if consistency_order == 4 # Fourth-order scheme has one additional fixed coefficient - num_reduced_unkown = 5 + num_reduced_unknown = 5 else # p = 2, 3 - num_reduced_unkown = consistency_order + num_reduced_unknown = consistency_order end # Construct stability polynomial for each eigenvalue pnoms = ones(Complex{Float64}, num_eig_vals, 1) # Init datastructure for monomial coefficients - gamma = Variable(num_stage_evals - num_reduced_unkown) + gamma = Variable(num_stage_evals - num_reduced_unknown) normalized_powered_eigvals = zeros(Complex{Float64}, num_eig_vals, num_stage_evals) normalize_power_eigvals!(normalized_powered_eigvals, @@ -168,7 +168,7 @@ function Trixi.bisect_stability_polynomial(consistency_order, num_eig_vals, end # Check if there are variables to optimize - if num_stage_evals - num_reduced_unkown > 0 + if num_stage_evals - num_reduced_unknown > 0 # Use last optimal values for gamma in (potentially) next iteration if consistency_order == 4 problem = minimize(stability_polynomials_PERK4!(pnoms, @@ -238,7 +238,7 @@ function Trixi.bisect_stability_polynomial(consistency_order, num_eig_vals, end undo_normalization!(gamma_opt, num_stage_evals, - num_reduced_unkown, consistency_order) + num_reduced_unknown, consistency_order) return gamma_opt, dt end