diff --git a/src/equations/compressible_euler_quasi_1d.jl b/src/equations/compressible_euler_quasi_1d.jl index ab661b8b35d..0a543277ee4 100644 --- a/src/equations/compressible_euler_quasi_1d.jl +++ b/src/equations/compressible_euler_quasi_1d.jl @@ -145,58 +145,6 @@ as defined in [`initial_condition_convergence_test`](@ref). return SVector(du1, du2, du3, 0.0) end -""" - boundary_condition_slip_wall(u_inner, orientation, direction, x, t, - surface_flux_function, equations::CompressibleEulerEquationsQuasi1D) -Determine the boundary numerical surface flux for a slip wall condition. -Imposes a zero normal velocity at the wall. -Density is taken from the internal solution state and pressure is computed as an -exact solution of a 1D Riemann problem. Further details about this boundary state -are available in the paper: -- J. J. W. van der Vegt and H. van der Ven (2002) - Slip flow boundary conditions in discontinuous Galerkin discretizations of - the Euler equations of gas dynamics - [PDF](https://reports.nlr.nl/bitstream/handle/10921/692/TP-2002-300.pdf?sequence=1) - - Should be used together with [`TreeMesh`](@ref). -""" -@inline function boundary_condition_slip_wall(u_inner, orientation, - direction, x, t, - surface_flux_function, - equations::CompressibleEulerEquationsQuasi1D) - # compute the primitive variables - rho_local, v_normal, p_local, a_local = cons2prim(u_inner, equations) - - if direction == 1 # flip sign of normal to make it outward pointing - v_normal *= -1 - end - - # Get the solution of the pressure Riemann problem - # See Section 6.3.3 of - # Eleuterio F. Toro (2009) - # Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction - # [DOI: 10.1007/b79761](https://doi.org/10.1007/b79761) - if v_normal <= 0.0 - sound_speed = sqrt(equations.gamma * p_local / rho_local) # local sound speed - p_star = p_local * - (1 + 0.5 * (equations.gamma - 1) * v_normal / sound_speed)^(2 * - equations.gamma * - equations.inv_gamma_minus_one) - else # v_normal > 0.0 - A = 2 / ((equations.gamma + 1) * rho_local) - B = p_local * (equations.gamma - 1) / (equations.gamma + 1) - p_star = p_local + - 0.5 * v_normal / A * - (v_normal + sqrt(v_normal^2 + 4 * A * (p_local + B))) - end - - # For the slip wall we directly set the flux as the normal velocity is zero - return SVector(zero(eltype(u_inner)), - p_star, - zero(eltype(u_inner)), - zero(eltype(u_inner))) -end - # Calculate 1D flux for a single point @inline function flux(u, orientation::Integer, equations::CompressibleEulerEquationsQuasi1D)