diff --git a/.github/workflows/Downgrade.yml b/.github/workflows/Downgrade.yml new file mode 100644 index 00000000000..c84b1026d1b --- /dev/null +++ b/.github/workflows/Downgrade.yml @@ -0,0 +1,86 @@ +name: Downgrade + +on: + pull_request: + paths-ignore: + - 'AUTHORS.md' + - 'CITATION.bib' + - 'CONTRIBUTING.md' + - 'LICENSE.md' + - 'NEWS.md' + - 'README.md' + - '.zenodo.json' + - '.github/workflows/benchmark.yml' + - '.github/workflows/CompatHelper.yml' + - '.github/workflows/TagBot.yml' + - 'benchmark/**' + - 'docs/**' + - 'utils/**' + workflow_dispatch: + +# Cancel redundant CI tests automatically +concurrency: + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: true + +jobs: + downgrade_test: + if: "!contains(github.event.head_commit.message, 'skip ci')" + # We could also include the Julia version as in + # name: ${{ matrix.trixi_test }} - ${{ matrix.os }} - Julia ${{ matrix.version }} - ${{ matrix.arch }} - ${{ github.event_name }} + # to be more specific. However, that requires us updating the required CI tests whenever we update Julia. + name: Downgrade ${{ matrix.trixi_test }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }} + runs-on: ${{ matrix.os }} + strategy: + fail-fast: false + matrix: + version: + - '1.9' + # - '~1.9.0-0' # including development versions + # - 'nightly' + os: + - ubuntu-latest + arch: + - x64 + trixi_test: + # - tree_part1 + # - tree_part2 + # - tree_part3 + # - tree_part4 + # - tree_part5 + # - tree_part6 + # - structured + # - p4est_part1 + # - p4est_part2 + # - t8code_part1 + # - unstructured_dgmulti + # - parabolic + # - paper_self_gravitating_gas_dynamics + # - misc_part1 + # - misc_part2 + # - performance_specializations_part1 + # - performance_specializations_part2 + # - mpi + - threaded + steps: + - uses: actions/checkout@v4 + - uses: julia-actions/setup-julia@v1 + with: + version: ${{ matrix.version }} + arch: ${{ matrix.arch }} + - run: julia -e 'using InteractiveUtils; versioninfo(verbose=true)' + - uses: julia-actions/cache@v1 + - uses: julia-actions/julia-downgrade-compat@v1 + with: + skip: LinearAlgebra,Printf,SparseArrays,DiffEqBase + projects: ., test + - uses: julia-actions/julia-buildpkg@v1 + env: + PYTHON: "" + - name: Run tests without coverage + uses: julia-actions/julia-runtest@v1 + with: + coverage: false + env: + PYTHON: "" + TRIXI_TEST: ${{ matrix.trixi_test }} diff --git a/NEWS.md b/NEWS.md index 38c02fb6866..ecc91581e9a 100644 --- a/NEWS.md +++ b/NEWS.md @@ -25,6 +25,7 @@ for human readability. - Different boundary conditions for quad/hex meshes in Abaqus format, even if not generated by HOHQMesh, can now be digested by Trixi in 2D and 3D. - Subcell (positivity) limiting support for nonlinear variables in 2D for `TreeMesh` +- Added Lighthill-Whitham-Richards (LWR) traffic model ## Changes when updating to v0.6 from v0.5.x diff --git a/Project.toml b/Project.toml index af3e6b4d078..9bed045637a 100644 --- a/Project.toml +++ b/Project.toml @@ -62,17 +62,17 @@ DiffEqCallbacks = "2.25" Downloads = "1.6" EllipsisNotation = "1.0" FillArrays = "0.13.2, 1" -ForwardDiff = "0.10.18" -HDF5 = "0.14, 0.15, 0.16, 0.17" +ForwardDiff = "0.10.24" +HDF5 = "0.16.10, 0.17" IfElse = "0.1" LinearAlgebra = "1" LinearMaps = "2.7, 3.0" -LoopVectorization = "0.12.118" +LoopVectorization = "0.12.151" MPI = "0.20" Makie = "0.19, 0.20" MuladdMacro = "0.2.2" -Octavian = "0.3.5" -OffsetArrays = "1.3" +Octavian = "0.3.21" +OffsetArrays = "1.12" P4est = "0.4.9" Polyester = "0.7.5" PrecompileTools = "1.1" @@ -81,19 +81,19 @@ RecipesBase = "1.1" Reexport = "1.0" Requires = "1.1" SciMLBase = "1.90, 2" -Setfield = "0.8, 1" +Setfield = "1" SimpleUnPack = "1.1" SparseArrays = "1" -StartUpDG = "0.17" -Static = "0.3, 0.4, 0.5, 0.6, 0.7, 0.8" +StartUpDG = "0.17.7" +Static = "0.8.7" StaticArrayInterface = "1.4" -StaticArrays = "1" -StrideArrays = "0.1.18" -StructArrays = "0.6" +StaticArrays = "1.5" +StrideArrays = "0.1.26" +StructArrays = "0.6.11" SummationByPartsOperators = "0.5.41" T8code = "0.4.3, 0.5" TimerOutputs = "0.5.7" -Triangulate = "2.0" +Triangulate = "2.2" TriplotBase = "0.1" TriplotRecipes = "0.1" TrixiBase = "0.1.1" diff --git a/README.md b/README.md index c531ab4d1a4..71370d3478e 100644 --- a/README.md +++ b/README.md @@ -53,7 +53,7 @@ installation and postprocessing procedures. Its features include: * Hyperbolic diffusion equations for elliptic problems * Lattice-Boltzmann equations (D2Q9 and D3Q27 schemes) * Shallow water equations - * Several scalar conservation laws (e.g., linear advection, Burgers' equation) + * Several scalar conservation laws (e.g., linear advection, Burgers' equation, LWR traffic flow) * Multi-physics simulations * [Self-gravitating gas dynamics](https://github.com/trixi-framework/paper-self-gravitating-gas-dynamics) * Shared-memory parallelization via multithreading diff --git a/benchmark/benchmarks.jl b/benchmark/benchmarks.jl index 15d1d96c05f..0d6fabcd4a9 100644 --- a/benchmark/benchmarks.jl +++ b/benchmark/benchmarks.jl @@ -2,6 +2,9 @@ # readability #! format: off +using Pkg +Pkg.activate(@__DIR__) + using BenchmarkTools using Trixi @@ -47,13 +50,14 @@ end let SUITE["latency"] = BenchmarkGroup() SUITE["latency"]["default_example"] = @benchmarkable run( - `$(Base.julia_cmd()) -e 'using Trixi; trixi_include(default_example())'`) seconds=60 + `$(Base.julia_cmd()) --project=$(@__DIR__) -e 'using Trixi; trixi_include(default_example())'`) seconds=60 for polydeg in [3, 7] command = "using Trixi; trixi_include(joinpath(examples_dir(), \"tree_2d_dgsem\", \"elixir_advection_extended.jl\"), tspan=(0.0, 1.0e-10), polydeg=$(polydeg), save_restart=TrivialCallback(), save_solution=TrivialCallback())" - SUITE["latency"]["polydeg_$polydeg"] = @benchmarkable run($`$(Base.julia_cmd()) -e $command`) seconds=60 + SUITE["latency"]["polydeg_$polydeg"] = @benchmarkable run( + $`$(Base.julia_cmd()) --project=$(@__DIR__) -e $command`) seconds=60 end SUITE["latency"]["euler_2d"] = @benchmarkable run( - `$(Base.julia_cmd()) -e 'using Trixi; trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_euler_kelvin_helmholtz_instability.jl"), tspan=(0.0, 1.0e-10), save_restart=TrivialCallback(), save_solution=TrivialCallback())'`) seconds=60 + `$(Base.julia_cmd()) --project=$(@__DIR__) -e 'using Trixi; trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_euler_kelvin_helmholtz_instability.jl"), tspan=(0.0, 1.0e-10), save_solution=TrivialCallback())'`) seconds=60 SUITE["latency"]["mhd_2d"] = @benchmarkable run( - `$(Base.julia_cmd()) -e 'using Trixi; trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_mhd_blast_wave.jl"), tspan=(0.0, 1.0e-10), save_solution=TrivialCallback())'`) seconds=60 + `$(Base.julia_cmd()) --project=$(@__DIR__) -e 'using Trixi; trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_mhd_blast_wave.jl"), tspan=(0.0, 1.0e-10), save_solution=TrivialCallback())'`) seconds=60 end diff --git a/benchmark/run_benchmarks.jl b/benchmark/run_benchmarks.jl index 3a92a9ba700..7b8c25752f8 100644 --- a/benchmark/run_benchmarks.jl +++ b/benchmark/run_benchmarks.jl @@ -1,3 +1,7 @@ +using Pkg +Pkg.activate(@__DIR__) +Pkg.develop(PackageSpec(path = dirname(@__DIR__))) +Pkg.instantiate() using PkgBenchmark using Trixi diff --git a/docs/literate/src/files/behind_the_scenes_simulation_setup.jl b/docs/literate/src/files/behind_the_scenes_simulation_setup.jl new file mode 100644 index 00000000000..c93660e9bc1 --- /dev/null +++ b/docs/literate/src/files/behind_the_scenes_simulation_setup.jl @@ -0,0 +1,253 @@ +#src # Behind the scenes of a simulation setup + +# This tutorial will guide you through a simple Trixi.jl setup ("elixir"), giving an overview of +# what happens in the background during the initialization of a simulation. While the setup +# described herein does not cover all details, it involves relatively stable parts of Trixi.jl that +# are unlikely to undergo significant changes in the near future. The goal is to clarify some of +# the more fundamental, *technical* concepts that are applicable to a variety of +# (also more complex) configurations. + +# Trixi.jl follows the [method of lines](http://www.scholarpedia.org/article/Method_of_lines) concept for solving partial differential equations (PDEs). +# Firstly, the PDEs are reduced to a (potentially huge) system of +# ordinary differential equations (ODEs) by discretizing the spatial derivatives. Subsequently, +# these generated ODEs may be solved with methods available in OrdinaryDiffEq.jl or those specifically +# implemented in Trixi.jl. The following steps elucidate the process of transitioning from PDEs to +# ODEs within the framework of Trixi.jl. + +# ## Basic setup + +# Import essential libraries and specify an equation. + +using Trixi, OrdinaryDiffEq +equations = LinearScalarAdvectionEquation2D((-0.2, 0.7)) + +# Generate a spatial discretization using a [`TreeMesh`](@ref) with a pre-coarsened set of cells. + +coordinates_min = (-2.0, -2.0) +coordinates_max = (2.0, 2.0) + +coarsening_patches = ((type = "box", coordinates_min = [0.0, -2.0], + coordinates_max = [2.0, 0.0]),) + +mesh = TreeMesh(coordinates_min, coordinates_max, initial_refinement_level = 2, + n_cells_max = 30_000, + coarsening_patches = coarsening_patches) + +# The created `TreeMesh` looks like the following: + +# ![TreeMesh_example](https://github.com/trixi-framework/Trixi.jl/assets/119304909/d5ef76ee-8246-4730-a692-b472c06063a3) + +# Instantiate a [`DGSEM`](@ref) solver with a user-specified polynomial degree. The solver +# will define `polydeg + 1` [Gauss-Lobatto nodes](https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss%E2%80%93Lobatto_rules) and their associated weights within +# the reference interval ``[-1, 1]`` in each spatial direction. These nodes will be subsequently +# used to approximate solutions on each leaf cell of the `TreeMesh`. + +solver = DGSEM(polydeg = 3) + +# Gauss-Lobatto nodes with `polydeg = 3`: + +# ![Gauss-Lobatto_nodes_example](https://github.com/trixi-framework/Trixi.jl/assets/119304909/1d894611-801e-4f75-bff0-d77ca1c672e5) + +# ## Overview of the [`SemidiscretizationHyperbolic`](@ref) type + +# At this stage, all necessary components for configuring the spatial discretization are in place. +# The remaining task is to combine these components into a single structure that will be used +# throughout the entire simulation process. This is where [`SemidiscretizationHyperbolic`](@ref) +# comes into play. + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition_convergence_test, + solver) + +# The constructor for the `SemidiscretizationHyperbolic` object calls numerous sub-functions to +# perform the necessary initialization steps. A brief description of the key sub-functions is +# provided below. + + +# - `init_elements(leaf_cell_ids, mesh, equations, dg.basis, RealT, uEltype)` + +# The fundamental elements for approximating the solution are the leaf +# cells. The solution is constructed as a polynomial of the degree specified in the `DGSEM` +# solver in each spatial direction on each leaf cell. This polynomial approximation is evaluated +# at the Gauss-Lobatto nodes mentioned earlier. The `init_elements` function extracts +# these leaf cells from the `TreeMesh`, assigns them the label "elements", records their +# coordinates, and maps the Gauss-Lobatto nodes from the 1D interval ``[-1, 1]`` onto each coordinate axis +# of every element. + + +# ![elements_example](https://github.com/trixi-framework/Trixi.jl/assets/119304909/9f486670-b579-4e42-8697-439540c8bbb4) + +# The visualization of elements with nodes shown here includes spaces between elements, which do +# not exist in reality. This spacing is included only for illustrative purposes to underscore the +# separation of elements and the independent projection of nodes onto each element. + + +# - `init_interfaces(leaf_cell_ids, mesh, elements)` + +# At this point, the elements with nodes have been defined; however, they lack the necessary +# communication functionality. This is crucial because the local solution polynomials on the +# elements are not independent of each other. Furthermore, nodes on the boundary of adjacent +# elements share the same spatial location, which requires a method to combine this into a +# meaningful solution. +# Here [Riemann solvers](https://en.wikipedia.org/wiki/Riemann_solver#Approximate_solvers) +# come into play which can handle the principal ambiguity of a multi-valued solution at the +# same spatial location. + +# As demonstrated earlier, the elements can have varying sizes. Let us initially consider +# neighbors with equal size. For these elements, the `init_interfaces` function generates +# interfaces that store information about adjacent elements, their relative positions, and +# allocate containers for sharing solution data between neighbors during the solution process. + +# In our visualization, these interfaces would conceptually resemble tubes connecting the +# corresponding elements. + +# ![interfaces_example](https://github.com/trixi-framework/Trixi.jl/assets/119304909/bc3b6b02-afbc-4371-aaf7-c7bdc5a6c540) + + +# - `init_mortars(leaf_cell_ids, mesh, elements, dg.mortar)` + +# Returning to the consideration of different sizes among adjacent elements, within the +# `TreeMesh`, adjacent leaf cells can vary in side length by a maximum factor of two. This +# implies that a large element has one neighbor of +# equal size with a connection through an interface, or two neighbors at half the size, +# requiring a connection through so called "mortars". In 3D, a large element would have +# four small neighbor elements. + +# Mortars store information about the connected elements, their relative positions, and allocate +# containers for storing the solutions along the boundaries between these elements. + +# Due to the differing sizes of adjacent elements, it is not feasible to directly map boundary +# nodes of adjacent elements. Therefore, the concept of mortars employs a mass-conserving +# interpolation function to map boundary nodes from a larger element to a smaller one. + +# In our visualization, mortars are represented as branched tubes. + +# ![mortars_example](https://github.com/trixi-framework/Trixi.jl/assets/119304909/43a95a60-3a31-4b1f-8724-14049e7a0481) + + +# - `init_boundaries(leaf_cell_ids, mesh, elements)` + +# In order to apply boundary conditions, it is necessary to identify the locations of the +# boundaries. Therefore, we initialize a "boundaries" object, which records the elements that +# contain boundaries, specifies which side of an element is a boundary, stores the coordinates +# of boundary nodes, and allocates containers for managing solutions at these boundaries. + +# In our visualization, boundaries and their corresponding nodes are highlighted with green, +# semi-transparent lines. + +# ![boundaries_example](https://github.com/trixi-framework/Trixi.jl/assets/119304909/21996b20-4a22-4dfb-b16a-e2c22c2f29fe) + +# All the structures mentioned earlier are collected as a cache of type `NamedTuple`. Subsequently, +# an object of type `SemidiscretizationHyperbolic` is initialized using this cache, initial and +# boundary conditions, equations, mesh and solver. + +# In conclusion, the primary purpose of a `SemidiscretizationHyperbolic` is to collect equations, +# the geometric representation of the domain, and approximation instructions, creating specialized +# structures to interconnect these components in a manner that enables their utilization for +# the numerical solution of partial differential equations (PDEs). + +# As evident from the earlier description of `SemidiscretizationHyperbolic`, it comprises numerous +# functions called subsequently. Without delving into details, the structure of the primary calls +# are illustrated as follows: + +# ![SemidiscretizationHyperbolic_structure](https://github.com/trixi-framework/Trixi.jl/assets/119304909/8bf59422-0537-4d7a-9f13-d9b2253c19d7) + +# ## Overview of the [`semidiscretize`](@ref) function + +# At this stage, we have defined the equations and configured the domain's discretization. The +# final step before solving is to select a suitable time span and apply the corresponding initial +# conditions, which are already stored in the initialized `SemidiscretizationHyperbolic` object. + +# The purpose of the [`semidiscretize`](@ref) function is to wrap the semidiscretization as an +# `ODEProblem` within the specified time interval. During this procedure the approximate solution +# is created at the given initial time via the specified `initial_condition` function from the +# `SemidiscretizationHyperbolic` object. This `ODEProblem` can be subsequently passed to the +# `solve` function from the [OrdinaryDiffEq.jl](https://github.com/SciML/OrdinaryDiffEq.jl) package +# or to [`Trixi.solve`](@ref). + +ode = semidiscretize(semi, (0.0, 1.0)); + +# The `semidiscretize` function involves a deep tree of subsequent calls, with the primary ones +# explained below. + + +# - `allocate_coefficients(mesh, equations, solver, cache)` + +# To apply initial conditions, a data structure ("container") needs to be generated to store the +# initial values of the target variables for each node within each element. + +# Since only one-dimensional `Array`s are `resize!`able in Julia, we use `Vector`s as an internal +# storage for the target variables and `resize!` them whenever needed, e.g. to change the number +# of elements. Then, during the solving process the same memory is reused by `unsafe_wrap`ping +# multi-dimensional `Array`s around the internal storage. + +# - `wrap_array(u_ode, semi)` + +# As previously noted, `u_ode` is constructed as a 1D vector to ensure compatibility with +# OrdinaryDiffEq.jl. However, for internal use within Trixi.jl, identifying which part of the +# vector relates to specific variables, elements, or nodes can be challenging. + +# This is why the `u_ode` vector is wrapped by the `wrap_array` function using `unsafe_wrap` +# to form a multidimensional array `u`. In this array, the first dimension corresponds to +# variables, followed by N dimensions corresponding to nodes for each of N space dimensions. +# The last dimension corresponds to the elements. +# Consequently, navigation within this multidimensional array becomes noticeably easier. + +# "Wrapping" in this context involves the creation of a reference to the same storage location +# but with an alternative structural representation. This approach enables the use of both +# instances `u` and `u_ode` as needed, so that changes are simultaneously reflected in both. +# This is possible because, from a storage perspective, they share the same stored data, while +# access to this data is provided in different ways. + + +# - `compute_coefficients!(u, initial_conditions, t, mesh::DG, equations, solver, cache)` + +# Now the variable `u`, intended to store solutions, has been allocated and wrapped, it is time +# to apply the initial conditions. The `compute_coefficients!` function calculates the initial +# conditions for each variable at every node within each element and properly stores them in the +# `u` array. + +# At this stage, the `semidiscretize` function has all the necessary components to initialize and +# return an `ODEProblem` object, which will be used by the `solve` function to compute the +# solution. + +# In summary, the internal workings of `semidiscretize` with brief descriptions can be presented +# as follows. + +# ![semidiscretize_structure](https://github.com/trixi-framework/Trixi.jl/assets/119304909/491eddc4-aadb-4e29-8c76-a7c821d0674e) + +# ## Functions `solve` and `rhs!` + +# Once the `ODEProblem` object is initialized, the `solve` function and one of the ODE solvers from +# the OrdinaryDiffEq.jl package can be utilized to compute an approximated solution using the +# instructions contained in the `ODEProblem` object. + +sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), dt = 0.01, + save_everystep = false); + +# Since the `solve` function and the ODE solver have no knowledge +# of a particular spatial discretization, it is necessary to define a +# "right-hand-side function", `rhs!`, within Trixi.jl. + +# Trixi.jl includes a set of `rhs!` functions designed to compute `du`, i.e., +# ``\frac{\partial u}{\partial t}`` according to the structure +# of the setup. These `rhs!` functions calculate interface, mortars, and boundary fluxes, in +# addition to surface and volume integrals, in order to construct the `du` vector. This `du` vector +# is then used by the time integration method to obtain the solution at the subsequent time step. +# The `rhs!` function is called by time integration methods in each iteration of the solve loop +# within OrdinaryDiffEq.jl, with arguments `du`, `u`, `semidiscretization`, and the current time. + +# Trixi.jl uses a two-levels approach for `rhs!` functions. The first level is limited to a +# single function for each `semidiscretization` type, and its role is to redirect data to the +# target `rhs!` for specific solver and mesh types. This target `rhs!` function is responsible +# for calculating `du`. + +# Path from the `solve` function call to the appropriate `rhs!` function call: + +# ![rhs_structure](https://github.com/trixi-framework/Trixi.jl/assets/119304909/dbea9a0e-25a4-4afa-855e-01f1ad619982) + +# Computed solution: + +using Plots +plot(sol) +pd = PlotData2D(sol) +plot!(getmesh(pd)) diff --git a/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/Project.toml b/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/Project.toml new file mode 100644 index 00000000000..43aec5b7f54 --- /dev/null +++ b/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/Project.toml @@ -0,0 +1,2 @@ +[deps] +Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" diff --git a/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/README.md b/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/README.md new file mode 100644 index 00000000000..011b5c75860 --- /dev/null +++ b/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/README.md @@ -0,0 +1,15 @@ +# Plots for the tutorial "Behind the scenes of a simulation setup" + +To create all the images for the tutorial, execute the following command from the directory of this `README.md`: +```julia +pkg> activate . +julia> include.(readdir("src"; join=true)) +``` +To create all images from a different directory, substitute `"src"` with the path to the `src` +folder. The resulting images will be generated in your current directory as PNG files. + +To generate a specific image, run the following command while replacing `"path/to/src"` and `"file_name"` with the appropriate values: +```julia +pkg> activate . +julia> include(joinpath("path/to/src", "file_name")) +``` \ No newline at end of file diff --git a/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/src/SemidiscretizationHyperbolic_structure_figure.jl b/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/src/SemidiscretizationHyperbolic_structure_figure.jl new file mode 100644 index 00000000000..cae7b19d470 --- /dev/null +++ b/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/src/SemidiscretizationHyperbolic_structure_figure.jl @@ -0,0 +1,64 @@ +using Plots +plot(Shape([(-2.3,4.5), (2.35,4.5), (2.35,2.5), (-2.3,2.5)]), linecolor="black", fillcolor="white", label=false,linewidth=2, size=(800,600), showaxis=false, grid=false, xlim=(-2.4,2.8), ylim=(-25,5.5)) +annotate!(2.3, 3.5, ("SemidiscretizationHyperbolic(mesh, equations, initial_conditions, solver; source_terms, +boundary_conditions, RealT, uEltype, initial_cache) ", 10, :black, :right)) +annotate!(-2.3, 1.5, ("creates and returns SemidiscretizationHyperbolic object, initialized using a mesh, equations, +initial_conditions, boundary_conditions, source_terms, solver and cache", 9, :black, :left)) +plot!([-1.2,-1.2],[0.6,-2],arrow=true,color=:black,linewidth=2,label="") +plot!([-1.2,-1.4],[0.6,-2],arrow=true,color=:black,linewidth=2,label="") +plot!([-1.2,-1.],[0.6,-2],arrow=true,color=:black,linewidth=2,label="") +annotate!(-1, -0.7, ("specialized for mesh +and solver types", 9, :black, :left)) +plot!([1.25,1.25],[0.6,-2],arrow=true,color=:black,linewidth=2,label="") +plot!([1.25,1.05],[0.6,-2],arrow=true,color=:black,linewidth=2,label="") +plot!([1.25,1.45],[0.6,-2],arrow=true,color=:black,linewidth=2,label="") +annotate!(1.48, -0.7, ("specialized for mesh +and boundary_conditions +types", 9, :black, :left)) + +plot!(Shape([(-2.3,-2), (-0.1,-2), (-0.1,-4), (-2.3,-4)]), linecolor="black", fillcolor="white", label=false,linewidth=2) +annotate!(-1.2, -3, ("create_cache(mesh::TreeMesh, equations, + solver::Dg, RealT, uEltype)", 10, :black, :center)) +plot!([-2.22,-2.22],[-4,-22],arrow=false,color=:black,linewidth=2,label="") + +plot!(Shape([(-0.05,-2), (2.6,-2), (2.6,-4), (-0.05,-4)]), linecolor="black", fillcolor="white", label=false,linewidth=2) +annotate!(1.27, -3, ("digest_boundary_conditions(boundary_conditions, + mesh, solver, cache)", 10, :black, :center)) +annotate!(2.6, -5, ("if necessary, converts passed boundary_conditions + into a suitable form for processing by Trixi.jl", 9, :black, :right)) + +plot!(Shape([(-2,-6), (-0.55,-6), (-0.55,-7.1), (-2,-7.1)]), linecolor="black", fillcolor="white", label=false,linewidth=2) +annotate!(-1.95, -6.5, ("local_leaf_cells(mesh.tree)", 10, :black, :left)) +annotate!(-2, -7.5, ("returns cells for which an element needs to be created (i.e. all leaf cells)", 9, :black, :left)) +plot!([-2.22,-2],[-6.5,-6.5],arrow=true,color=:black,linewidth=2,label="") + +plot!(Shape([(-2,-9), (1.73,-9), (1.73,-10.1), (-2,-10.1)]), linecolor="black", fillcolor="white", label=false,linewidth=2) +annotate!(-1.95, -9.5, ("init_elements(leaf_cell_ids, mesh, equations, dg.basis, RealT, uEltype)", 10, :black, :left)) +annotate!(-2, -10.5, ("creates and initializes elements, projects Gauss-Lobatto basis onto each of them", 9, :black, :left)) +plot!([-2.22,-2],[-9.5,-9.5],arrow=true,color=:black,linewidth=2,label="") + +plot!(Shape([(-2,-12), (0.4,-12), (0.4,-13.1), (-2,-13.1)]), linecolor="black", fillcolor="white", label=false,linewidth=2) +annotate!(-1.95, -12.5, ("init_interfaces(leaf_cell_ids, mesh, elements)", 10, :black, :left)) +annotate!(-2, -13.5, ("creates and initializes interfaces between each pair of adjacent elements of the same size", 9, :black, :left)) +plot!([-2.22,-2],[-12.5,-12.5],arrow=true,color=:black,linewidth=2,label="") + +plot!(Shape([(-2,-15), (0.5,-15), (0.5,-16.1), (-2,-16.1)]), linecolor="black", fillcolor="white", label=false,linewidth=2) +annotate!(-1.95, -15.5, ("init_boundaries(leaf_cell_ids, mesh, elements)", 10, :black, :left)) +annotate!(-2, -17, ("creates and initializes boundaries, remembers each boundary element, as well as the coordinates of +each boundary node", 9, :black, :left)) +plot!([-2.22,-2],[-15.5,-15.5],arrow=true,color=:black,linewidth=2,label="") + +plot!(Shape([(-1.6,-18), (1.3,-18), (1.3,-19.1), (-1.6,-19.1)]), linecolor="black", fillcolor="white", label=false,linewidth=2) +annotate!(-1.55, -18.5, ("init_mortars(leaf_cell_ids, mesh, elements, dg.mortar)", 10, :black, :left)) +annotate!(-1.6, -20, ("creates and initializes mortars (type of interfaces) between each triple of adjacent coarsened +and corresponding small elements", 9, :black, :left)) +plot!([-2.22,-1.6],[-18.5,-18.5],arrow=true,color=:black,linewidth=2,label="") +annotate!(-2.15, -19, ("2D and 3D", 8, :black, :left)) + +plot!(Shape([(-2,-21), (1.5,-21), (1.5,-23.1), (-2,-23.1)]), linecolor="black", fillcolor="white", label=false,linewidth=2) +annotate!(-1.95, -22, ("create_cache(mesh, equations, dg.volume_integral, dg, uEltype) +for 2D and 3D create_cache(mesh, equations, dg.mortar, uEltype)", 10, :black, :left)) +annotate!(-2, -23.5, ("add specialized parts of the cache required to compute the volume integral, etc.", 9, :black, :left)) +plot!([-2.22,-2],[-22,-22],arrow=true,color=:black,linewidth=2,label="") + +savefig("./SemidiscretizationHyperbolic") \ No newline at end of file diff --git a/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/src/generate_boundary_figure.jl b/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/src/generate_boundary_figure.jl new file mode 100644 index 00000000000..14475d21339 --- /dev/null +++ b/docs/literate/src/files/behind_the_scenes_simulation_setup_plots/src/generate_boundary_figure.jl @@ -0,0 +1,190 @@ +using Plots + +function min(coordinates::Vector{Tuple{Float64, Float64}}, i) + min=coordinates[1][i] + for j in coordinates + if min>j[i] + min=j[i] + end + end + return min +end + +function max(coordinates::Vector{Tuple{Float64, Float64}}, i) + max=coordinates[1][i] + for j in coordinates + if maxj[i] + min=j[i] + end + end + return min +end + +function max(coordinates::Vector{Tuple{Float64, Float64}}, i) + max=coordinates[1][i] + for j in coordinates + if maxj[i] + min=j[i] + end + end + return min +end + +function max(coordinates::Vector{Tuple{Float64, Float64}}, i) + max=coordinates[1][i] + for j in coordinates + if maxj[i] + min=j[i] + end + end + return min +end + +function max(coordinates::Vector{Tuple{Float64, Float64}}, i) + max=coordinates[1][i] + for j in coordinates + if max ("first_steps", "create_first_setup.jl"), "Changing Trixi.jl itself" => ("first_steps", "changing_trixi.jl"), ], + "Behind the scenes of a simulation setup" => "behind_the_scenes_simulation_setup.jl", # Topic: DG semidiscretizations "Introduction to DG methods" => "scalar_linear_advection_1d.jl", "DGSEM with flux differencing" => "DGSEM_FluxDiff.jl", @@ -76,7 +77,7 @@ files = [ # Topic: other stuff "Explicit time stepping" => "time_stepping.jl", "Differentiable programming" => "differentiable_programming.jl", - "Custom semidiscretizations" => "custom_semidiscretization.jl" + "Custom semidiscretizations" => "custom_semidiscretization.jl", ] tutorials = create_tutorials(files) diff --git a/examples/structured_1d_dgsem/elixir_traffic_flow_lwr_greenlight.jl b/examples/structured_1d_dgsem/elixir_traffic_flow_lwr_greenlight.jl new file mode 100644 index 00000000000..e5badf14451 --- /dev/null +++ b/examples/structured_1d_dgsem/elixir_traffic_flow_lwr_greenlight.jl @@ -0,0 +1,80 @@ + +using OrdinaryDiffEq +using Trixi + +############################################################################### + +equations = TrafficFlowLWREquations1D() + +solver = DGSEM(polydeg = 3, surface_flux = FluxHLL(min_max_speed_davis)) + +coordinates_min = (-1.0,) # minimum coordinate +coordinates_max = (1.0,) # maximum coordinate +cells_per_dimension = (64,) + +mesh = StructuredMesh(cells_per_dimension, coordinates_min, coordinates_max, + periodicity = false) + +# Example inspired from http://www.clawpack.org/riemann_book/html/Traffic_flow.html#Example:-green-light +# Green light that at x = 0 which switches at t = 0 from red to green. +# To the left there are cars bumper to bumper, to the right there are no cars. +function initial_condition_greenlight(x, t, equation::TrafficFlowLWREquations1D) + scalar = x[1] < 0.0 ? 1.0 : 0.0 + + return SVector(scalar) +end + +############################################################################### +# Specify non-periodic boundary conditions + +# Assume that there are always cars waiting at the left +function inflow(x, t, equations::TrafficFlowLWREquations1D) + return initial_condition_greenlight(coordinates_min, t, equations) +end +boundary_condition_inflow = BoundaryConditionDirichlet(inflow) + +# Cars may leave the modeled domain +function boundary_condition_outflow(u_inner, orientation, normal_direction, x, t, + surface_flux_function, + equations::TrafficFlowLWREquations1D) + # Calculate the boundary flux entirely from the internal solution state + flux = Trixi.flux(u_inner, orientation, equations) + + return flux +end + +boundary_conditions = (x_neg = boundary_condition_inflow, + x_pos = boundary_condition_outflow) + +initial_condition = initial_condition_greenlight + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, + boundary_conditions = boundary_conditions) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 0.5) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval = analysis_interval) + +alive_callback = AliveCallback(analysis_interval = analysis_interval) + +stepsize_callback = StepsizeCallback(cfl = 1.2) + +callbacks = CallbackSet(summary_callback, + analysis_callback, alive_callback, + stepsize_callback) + +############################################################################### +# run the simulation + +sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), + dt = 42, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep = false, callback = callbacks); + +summary_callback() # print the timer summary diff --git a/examples/tree_1d_dgsem/elixir_traffic_flow_lwr_convergence.jl b/examples/tree_1d_dgsem/elixir_traffic_flow_lwr_convergence.jl new file mode 100644 index 00000000000..59258018f8c --- /dev/null +++ b/examples/tree_1d_dgsem/elixir_traffic_flow_lwr_convergence.jl @@ -0,0 +1,54 @@ + +using OrdinaryDiffEq +using Trixi + +############################################################################### + +equations = TrafficFlowLWREquations1D() + +# Use first order finite volume to prevent oscillations at the shock +solver = DGSEM(polydeg = 3, surface_flux = flux_hll) + +coordinates_min = 0.0 # minimum coordinate +coordinates_max = 2.0 # maximum coordinate + +# Create a uniformly refined mesh with periodic boundaries +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level = 4, + n_cells_max = 30_000) + +############################################################################### +# Specify non-periodic boundary conditions + +initial_condition = initial_condition_convergence_test +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, + source_terms = source_terms_convergence_test) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 2.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval = analysis_interval) + +alive_callback = AliveCallback(analysis_interval = analysis_interval) + +stepsize_callback = StepsizeCallback(cfl = 1.6) + +callbacks = CallbackSet(summary_callback, + analysis_callback, + alive_callback, + stepsize_callback) + +############################################################################### +# run the simulation + +sol = solve(ode, CarpenterKennedy2N54(), + dt = 42, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep = false, callback = callbacks); + +summary_callback() # print the timer summary diff --git a/examples/tree_1d_dgsem/elixir_traffic_flow_lwr_trafficjam.jl b/examples/tree_1d_dgsem/elixir_traffic_flow_lwr_trafficjam.jl new file mode 100644 index 00000000000..d3a17b513fc --- /dev/null +++ b/examples/tree_1d_dgsem/elixir_traffic_flow_lwr_trafficjam.jl @@ -0,0 +1,82 @@ + +using OrdinaryDiffEq +using Trixi + +############################################################################### + +equations = TrafficFlowLWREquations1D() + +# Use first order finite volume to prevent oscillations at the shock +solver = DGSEM(polydeg = 0, surface_flux = flux_lax_friedrichs) + +coordinates_min = -1.0 # minimum coordinate +coordinates_max = 1.0 # maximum coordinate + +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level = 9, + n_cells_max = 30_000, + periodicity = false) + +# Example taken from http://www.clawpack.org/riemann_book/html/Traffic_flow.html#Example:-Traffic-jam +# Discontinuous initial condition (Riemann Problem) leading to a shock that moves to the left. +# The shock corresponds to the traffic congestion. +function initial_condition_traffic_jam(x, t, equation::TrafficFlowLWREquations1D) + scalar = x[1] < 0.0 ? 0.5 : 1.0 + + return SVector(scalar) +end + +############################################################################### +# Specify non-periodic boundary conditions + +function outflow(x, t, equations::TrafficFlowLWREquations1D) + return initial_condition_traffic_jam(coordinates_min, t, equations) +end +boundary_condition_outflow = BoundaryConditionDirichlet(outflow) + +function boundary_condition_inflow(u_inner, orientation, normal_direction, x, t, + surface_flux_function, + equations::TrafficFlowLWREquations1D) + # Calculate the boundary flux entirely from the internal solution state + flux = Trixi.flux(u_inner, orientation, equations) + + return flux +end + +boundary_conditions = (x_neg = boundary_condition_outflow, + x_pos = boundary_condition_inflow) + +initial_condition = initial_condition_traffic_jam + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, + boundary_conditions = boundary_conditions) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 0.5) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval = analysis_interval) + +alive_callback = AliveCallback(analysis_interval = analysis_interval) + +stepsize_callback = StepsizeCallback(cfl = 1.0) + +callbacks = CallbackSet(summary_callback, + analysis_callback, alive_callback, + stepsize_callback) + +############################################################################### +# run the simulation + +# Note: Be careful when increasing the polynomial degree and switching from first order finite volume +# to some actual DG method - in that case, you should also exchange the ODE solver. +sol = solve(ode, Euler(), + dt = 42, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep = false, callback = callbacks); + +summary_callback() # print the timer summary diff --git a/src/Trixi.jl b/src/Trixi.jl index 866134a8fc4..efbd5eaa2f8 100644 --- a/src/Trixi.jl +++ b/src/Trixi.jl @@ -156,7 +156,8 @@ export AcousticPerturbationEquations2D, ShallowWaterEquations1D, ShallowWaterEquations2D, ShallowWaterEquationsQuasi1D, LinearizedEulerEquations2D, - PolytropicEulerEquations2D + PolytropicEulerEquations2D, + TrafficFlowLWREquations1D export LaplaceDiffusion1D, LaplaceDiffusion2D, LaplaceDiffusion3D, CompressibleNavierStokesDiffusion1D, CompressibleNavierStokesDiffusion2D, diff --git a/src/equations/equations.jl b/src/equations/equations.jl index d11ead8a2b8..8f476cf6f16 100644 --- a/src/equations/equations.jl +++ b/src/equations/equations.jl @@ -505,4 +505,9 @@ include("linearized_euler_2d.jl") abstract type AbstractEquationsParabolic{NDIMS, NVARS, GradientVariables} <: AbstractEquations{NDIMS, NVARS} end + +# Lighthill-Witham-Richards (LWR) traffic flow model +abstract type AbstractTrafficFlowLWREquations{NDIMS, NVARS} <: + AbstractEquations{NDIMS, NVARS} end +include("traffic_flow_lwr_1d.jl") end # @muladd diff --git a/src/equations/polytropic_euler_2d.jl b/src/equations/polytropic_euler_2d.jl index f5d2f7b0bad..e900fd64073 100644 --- a/src/equations/polytropic_euler_2d.jl +++ b/src/equations/polytropic_euler_2d.jl @@ -301,6 +301,46 @@ end return abs(v1) + c, abs(v2) + c end +# Calculate maximum wave speed for local Lax-Friedrichs-type dissipation as the +# maximum velocity magnitude plus the maximum speed of sound +@inline function max_abs_speed_naive(u_ll, u_rr, orientation::Integer, + equations::PolytropicEulerEquations2D) + rho_ll, v1_ll, v2_ll = cons2prim(u_ll, equations) + rho_rr, v1_rr, v2_rr = cons2prim(u_rr, equations) + + # Get the velocity value in the appropriate direction + if orientation == 1 + v_ll = v1_ll + v_rr = v1_rr + else # orientation == 2 + v_ll = v2_ll + v_rr = v2_rr + end + # Calculate sound speeds (we have p = kappa * rho^gamma) + c_ll = sqrt(equations.gamma * equations.kappa * rho_ll^(equations.gamma - 1)) + c_rr = sqrt(equations.gamma * equations.kappa * rho_rr^(equations.gamma - 1)) + + λ_max = max(abs(v_ll), abs(v_rr)) + max(c_ll, c_rr) +end + +@inline function max_abs_speed_naive(u_ll, u_rr, normal_direction::AbstractVector, + equations::PolytropicEulerEquations2D) + rho_ll, v1_ll, v2_ll = cons2prim(u_ll, equations) + rho_rr, v1_rr, v2_rr = cons2prim(u_rr, equations) + + # Calculate normal velocities and sound speed (we have p = kappa * rho^gamma) + # left + v_ll = (v1_ll * normal_direction[1] + + v2_ll * normal_direction[2]) + c_ll = sqrt(equations.gamma * equations.kappa * rho_ll^(equations.gamma - 1)) + # right + v_rr = (v1_rr * normal_direction[1] + + v2_rr * normal_direction[2]) + c_rr = sqrt(equations.gamma * equations.kappa * rho_rr^(equations.gamma - 1)) + + return max(abs(v_ll), abs(v_rr)) + max(c_ll, c_rr) * norm(normal_direction) +end + # Convert conservative variables to primitive @inline function cons2prim(u, equations::PolytropicEulerEquations2D) rho, rho_v1, rho_v2 = u diff --git a/src/equations/traffic_flow_lwr_1d.jl b/src/equations/traffic_flow_lwr_1d.jl new file mode 100644 index 00000000000..a4d2613a5c8 --- /dev/null +++ b/src/equations/traffic_flow_lwr_1d.jl @@ -0,0 +1,116 @@ +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin +#! format: noindent + +@doc raw""" + TrafficFlowLWREquations1D + +The classic Lighthill-Witham Richards (LWR) model for 1D traffic flow. +The car density is denoted by $u \in [0, 1]$ and +the maximum possible speed (e.g. due to speed limits) is $v_{\text{max}}$. +```math +\partial_t u + v_{\text{max}} \partial_1 [u (1 - u)] = 0 +``` +For more details see e.g. Section 11.1 of +- Randall LeVeque (2002) +Finite Volume Methods for Hyperbolic Problems +[DOI: 10.1017/CBO9780511791253]https://doi.org/10.1017/CBO9780511791253 +""" +struct TrafficFlowLWREquations1D{RealT <: Real} <: AbstractTrafficFlowLWREquations{1, 1} + v_max::RealT + + function TrafficFlowLWREquations1D(v_max = 1.0) + new{typeof(v_max)}(v_max) + end +end + +varnames(::typeof(cons2cons), ::TrafficFlowLWREquations1D) = ("car-density",) +varnames(::typeof(cons2prim), ::TrafficFlowLWREquations1D) = ("car-density",) + +""" + initial_condition_convergence_test(x, t, equations::TrafficFlowLWREquations1D) + +A smooth initial condition used for convergence tests. +""" +function initial_condition_convergence_test(x, t, equations::TrafficFlowLWREquations1D) + c = 2.0 + A = 1.0 + L = 1 + f = 1 / L + omega = 2 * pi * f + scalar = c + A * sin(omega * (x[1] - t)) + + return SVector(scalar) +end + +""" + source_terms_convergence_test(u, x, t, equations::TrafficFlowLWREquations1D) + +Source terms used for convergence tests in combination with +[`initial_condition_convergence_test`](@ref). +""" +@inline function source_terms_convergence_test(u, x, t, + equations::TrafficFlowLWREquations1D) + # Same settings as in `initial_condition` + c = 2.0 + A = 1.0 + L = 1 + f = 1 / L + omega = 2 * pi * f + du = omega * cos(omega * (x[1] - t)) * + (-1 - equations.v_max * (2 * sin(omega * (x[1] - t)) + 3)) + + return SVector(du) +end + +# Calculate 1D flux in for a single point +@inline function flux(u, orientation::Integer, equations::TrafficFlowLWREquations1D) + return SVector(equations.v_max * u[1] * (1.0 - u[1])) +end + +# Calculate maximum wave speed for local Lax-Friedrichs-type dissipation +@inline function max_abs_speed_naive(u_ll, u_rr, orientation::Integer, + equations::TrafficFlowLWREquations1D) + λ_max = max(abs(equations.v_max * (1.0 - 2 * u_ll[1])), + abs(equations.v_max * (1.0 - 2 * u_rr[1]))) +end + +# Calculate minimum and maximum wave speeds for HLL-type fluxes +@inline function min_max_speed_naive(u_ll, u_rr, orientation::Integer, + equations::TrafficFlowLWREquations1D) + jac_L = equations.v_max * (1.0 - 2 * u_ll[1]) + jac_R = equations.v_max * (1.0 - 2 * u_rr[1]) + + λ_min = min(jac_L, jac_R) + λ_max = max(jac_L, jac_R) + + return λ_min, λ_max +end + +@inline function min_max_speed_davis(u_ll, u_rr, orientation::Integer, + equations::TrafficFlowLWREquations1D) + min_max_speed_naive(u_ll, u_rr, orientation, equations) +end + +@inline function max_abs_speeds(u, equations::TrafficFlowLWREquations1D) + return (abs(equations.v_max * (1.0 - 2 * u[1])),) +end + +# Convert conservative variables to primitive +@inline cons2prim(u, equations::TrafficFlowLWREquations1D) = u + +# Convert conservative variables to entropy variables +@inline cons2entropy(u, equations::TrafficFlowLWREquations1D) = u + +# Calculate entropy for a conservative state `cons` +@inline entropy(u::Real, ::TrafficFlowLWREquations1D) = 0.5 * u^2 +@inline entropy(u, equations::TrafficFlowLWREquations1D) = entropy(u[1], equations) + +# Calculate total energy for a conservative state `cons` +@inline energy_total(u::Real, ::TrafficFlowLWREquations1D) = 0.5 * u^2 +@inline energy_total(u, equations::TrafficFlowLWREquations1D) = energy_total(u[1], + equations) +end # @muladd diff --git a/test/Project.toml b/test/Project.toml index ecae0ac0900..a376c2805ea 100644 --- a/test/Project.toml +++ b/test/Project.toml @@ -13,13 +13,13 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [compat] Aqua = "0.8" -CairoMakie = "0.6, 0.7, 0.8, 0.9, 0.10" +CairoMakie = "0.10" Downloads = "1" -ForwardDiff = "0.10" +ForwardDiff = "0.10.24" LinearAlgebra = "1" MPI = "0.20" OrdinaryDiffEq = "6.49.1" -Plots = "1.16" +Plots = "1.19" Printf = "1" Random = "1" Test = "1" diff --git a/test/test_structured_1d.jl b/test/test_structured_1d.jl index f0eecfa9acd..fea06554c57 100644 --- a/test/test_structured_1d.jl +++ b/test/test_structured_1d.jl @@ -138,6 +138,21 @@ end @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000 end end + +@trixi_testset "elixir_traffic_flow_lwr_greenlight.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, + "elixir_traffic_flow_lwr_greenlight.jl"), + l2=[0.2005523261652845], + linf=[0.5052827913468407]) + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000 + end +end end # Clean up afterwards: delete Trixi.jl output directory diff --git a/test/test_tree_1d.jl b/test/test_tree_1d.jl index 66385fa6a2d..4a25a51a45e 100644 --- a/test/test_tree_1d.jl +++ b/test/test_tree_1d.jl @@ -45,6 +45,9 @@ isdir(outdir) && rm(outdir, recursive = true) # FDSBP methods on the TreeMesh include("test_tree_1d_fdsbp.jl") + + # Traffic flow LWR + include("test_tree_1d_traffic_flow_lwr.jl") end # Coverage test for all initial conditions diff --git a/test/test_tree_1d_traffic_flow_lwr.jl b/test/test_tree_1d_traffic_flow_lwr.jl new file mode 100644 index 00000000000..54412e314b3 --- /dev/null +++ b/test/test_tree_1d_traffic_flow_lwr.jl @@ -0,0 +1,42 @@ +module TestExamples1DTrafficFlowLWR + +using Test +using Trixi + +include("test_trixi.jl") + +EXAMPLES_DIR = pkgdir(Trixi, "examples", "tree_1d_dgsem") + +@testset "Traffic-flow LWR" begin +#! format: noindent + +@trixi_testset "elixir_traffic_flow_lwr_convergence.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, + "elixir_traffic_flow_lwr_convergence.jl"), + l2=[0.0008455067389588569], + linf=[0.004591951086623913]) + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000 + end +end + +@trixi_testset "elixir_traffic_flow_lwr_trafficjam.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_traffic_flow_lwr_trafficjam.jl"), + l2=[0.1761758135539748], linf=[0.5]) + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000 + end +end +end + +end # module diff --git a/test/test_unit.jl b/test/test_unit.jl index 9614960f22e..1907a281718 100644 --- a/test/test_unit.jl +++ b/test/test_unit.jl @@ -880,6 +880,30 @@ end end end +@timed_testset "Consistency check for Lax-Friedrich flux: Polytropic CEE" begin + for gamma in [1.4, 1.0, 5 / 3] + kappa = 0.5 # Scaling factor for the pressure. + equations = PolytropicEulerEquations2D(gamma, kappa) + u = SVector(1.1, -0.5, 2.34) + + orientations = [1, 2] + for orientation in orientations + @test flux_lax_friedrichs(u, u, orientation, equations) ≈ + flux(u, orientation, equations) + end + + normal_directions = [SVector(1.0, 0.0), + SVector(0.0, 1.0), + SVector(0.5, -0.5), + SVector(-1.2, 0.3)] + + for normal_direction in normal_directions + @test flux_lax_friedrichs(u, u, normal_direction, equations) ≈ + flux(u, normal_direction, equations) + end + end +end + @timed_testset "Consistency check for HLL flux with Davis wave speed estimates: LEE" begin flux_hll = FluxHLL(min_max_speed_davis)