diff --git a/NEWS.md b/NEWS.md index 54fbb90b8fc..5dd911391a6 100644 --- a/NEWS.md +++ b/NEWS.md @@ -38,7 +38,8 @@ for human readability. - Wetting and drying feature and examples for 1D and 2D shallow water equations - Implementation of the polytropic Euler equations in 2D - Implementation of the quasi-1D shallow water equations -- Subcell positivity limiting support for conservative variables in 2D for `TreeMesh` +- Subcell (positivity and local min/max) limiting support for conservative variables + in 2D for `TreeMesh` - AMR for hyperbolic-parabolic equations on 2D/3D `TreeMesh` - Added `GradientVariables` type parameter to `AbstractEquationsParabolic` diff --git a/examples/tree_2d_dgsem/elixir_euler_blast_wave_sc_subcell_nonperiodic.jl b/examples/tree_2d_dgsem/elixir_euler_blast_wave_sc_subcell_nonperiodic.jl new file mode 100644 index 00000000000..209aa2ae352 --- /dev/null +++ b/examples/tree_2d_dgsem/elixir_euler_blast_wave_sc_subcell_nonperiodic.jl @@ -0,0 +1,93 @@ + +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Euler equations + +equations = CompressibleEulerEquations2D(1.4) + +""" + initial_condition_blast_wave(x, t, equations::CompressibleEulerEquations2D) + +A medium blast wave taken from +- Sebastian Hennemann, Gregor J. Gassner (2020) + A provably entropy stable subcell shock capturing approach for high order split form DG + [arXiv: 2008.12044](https://arxiv.org/abs/2008.12044) +""" +function initial_condition_blast_wave(x, t, equations::CompressibleEulerEquations2D) + # Modified From Hennemann & Gassner JCP paper 2020 (Sec. 6.3) -> "medium blast wave" + # Set up polar coordinates + inicenter = SVector(0.0, 0.0) + x_norm = x[1] - inicenter[1] + y_norm = x[2] - inicenter[2] + r = sqrt(x_norm^2 + y_norm^2) + phi = atan(y_norm, x_norm) + sin_phi, cos_phi = sincos(phi) + + # Calculate primitive variables + rho = r > 0.5 ? 1.0 : 1.1691 + v1 = r > 0.5 ? 0.0 : 0.1882 * cos_phi + v2 = r > 0.5 ? 0.0 : 0.1882 * sin_phi + p = r > 0.5 ? 1.0E-3 : 1.245 + + return prim2cons(SVector(rho, v1, v2, p), equations) +end +initial_condition = initial_condition_blast_wave + +boundary_condition = BoundaryConditionDirichlet(initial_condition) + +surface_flux = flux_lax_friedrichs +volume_flux = flux_ranocha +basis = LobattoLegendreBasis(3) +limiter_idp = SubcellLimiterIDP(equations, basis; + local_minmax_variables_cons = ["rho"]) +volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; + volume_flux_dg = volume_flux, + volume_flux_fv = surface_flux) +solver = DGSEM(basis, surface_flux, volume_integral) + +coordinates_min = (-2.0, -2.0) +coordinates_max = (2.0, 2.0) +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level = 6, + n_cells_max = 10_000, + periodicity = false) + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, + boundary_conditions = boundary_condition) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 2.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval = analysis_interval) + +alive_callback = AliveCallback(analysis_interval = analysis_interval) + +save_solution = SaveSolutionCallback(interval = 100, + save_initial_solution = true, + save_final_solution = true, + solution_variables = cons2prim) + +stepsize_callback = StepsizeCallback(cfl = 0.3) + +callbacks = CallbackSet(summary_callback, + analysis_callback, alive_callback, + save_solution, + stepsize_callback) + +############################################################################### +# run the simulation + +stage_callbacks = (SubcellLimiterIDPCorrection(), BoundsCheckCallback(save_errors = false)) + +sol = Trixi.solve(ode, Trixi.SimpleSSPRK33(stage_callbacks = stage_callbacks); + dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep = false, callback = callbacks); +summary_callback() # print the timer summary diff --git a/examples/tree_2d_dgsem/elixir_euler_sedov_blast_wave_sc_subcell.jl b/examples/tree_2d_dgsem/elixir_euler_sedov_blast_wave_sc_subcell.jl new file mode 100644 index 00000000000..c1ba3d96962 --- /dev/null +++ b/examples/tree_2d_dgsem/elixir_euler_sedov_blast_wave_sc_subcell.jl @@ -0,0 +1,91 @@ + +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Euler equations +gamma = 1.4 +equations = CompressibleEulerEquations2D(gamma) + +""" + initial_condition_sedov_blast_wave(x, t, equations::CompressibleEulerEquations2D) + +The Sedov blast wave setup based on Flash +- https://flash.rochester.edu/site/flashcode/user_support/flash_ug_devel/node187.html#SECTION010114000000000000000 +""" +function initial_condition_sedov_blast_wave(x, t, equations::CompressibleEulerEquations2D) + # Set up polar coordinates + inicenter = SVector(0.0, 0.0) + x_norm = x[1] - inicenter[1] + y_norm = x[2] - inicenter[2] + r = sqrt(x_norm^2 + y_norm^2) + + # Setup based on https://flash.rochester.edu/site/flashcode/user_support/flash_ug_devel/node187.html#SECTION010114000000000000000 + r0 = 0.21875 # = 3.5 * smallest dx (for domain length=4 and max-ref=6) + # r0 = 0.5 # = more reasonable setup + E = 1.0 + p0_inner = 3 * (equations.gamma - 1) * E / (3 * pi * r0^2) + p0_outer = 1.0e-5 # = true Sedov setup + # p0_outer = 1.0e-3 # = more reasonable setup + + # Calculate primitive variables + rho = 1.0 + v1 = 0.0 + v2 = 0.0 + p = r > r0 ? p0_outer : p0_inner + + return prim2cons(SVector(rho, v1, v2, p), equations) +end +initial_condition = initial_condition_sedov_blast_wave + +surface_flux = flux_lax_friedrichs +volume_flux = flux_chandrashekar +basis = LobattoLegendreBasis(3) +limiter_idp = SubcellLimiterIDP(equations, basis; + local_minmax_variables_cons = ["rho"]) +volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; + volume_flux_dg = volume_flux, + volume_flux_fv = surface_flux) +solver = DGSEM(basis, surface_flux, volume_integral) + +coordinates_min = (-2.0, -2.0) +coordinates_max = (2.0, 2.0) +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level = 3, + n_cells_max = 100_000) + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 3.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 1000 +analysis_callback = AnalysisCallback(semi, interval = analysis_interval) + +alive_callback = AliveCallback(analysis_interval = analysis_interval) + +save_solution = SaveSolutionCallback(interval = 1000, + save_initial_solution = true, + save_final_solution = true, + solution_variables = cons2prim) + +stepsize_callback = StepsizeCallback(cfl = 0.6) + +callbacks = CallbackSet(summary_callback, + analysis_callback, alive_callback, + stepsize_callback, + save_solution) +############################################################################### +# run the simulation + +stage_callbacks = (SubcellLimiterIDPCorrection(), BoundsCheckCallback(save_errors = false)) + +sol = Trixi.solve(ode, Trixi.SimpleSSPRK33(stage_callbacks = stage_callbacks); + dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep = false, callback = callbacks); +summary_callback() # print the timer summary diff --git a/examples/tree_2d_dgsem/elixir_euler_shockcapturing_subcell.jl b/examples/tree_2d_dgsem/elixir_euler_shockcapturing_subcell.jl index 3fea48b30da..282805a0e03 100644 --- a/examples/tree_2d_dgsem/elixir_euler_shockcapturing_subcell.jl +++ b/examples/tree_2d_dgsem/elixir_euler_shockcapturing_subcell.jl @@ -39,7 +39,7 @@ surface_flux = flux_lax_friedrichs volume_flux = flux_ranocha basis = LobattoLegendreBasis(3) limiter_idp = SubcellLimiterIDP(equations, basis; - positivity_variables_cons = [1], + positivity_variables_cons = ["rho"], positivity_correction_factor = 0.5) volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; volume_flux_dg = volume_flux, diff --git a/examples/tree_2d_dgsem/elixir_eulermulti_shock_bubble_shockcapturing_subcell_minmax.jl b/examples/tree_2d_dgsem/elixir_eulermulti_shock_bubble_shockcapturing_subcell_minmax.jl new file mode 100644 index 00000000000..3159a2066ad --- /dev/null +++ b/examples/tree_2d_dgsem/elixir_eulermulti_shock_bubble_shockcapturing_subcell_minmax.jl @@ -0,0 +1,142 @@ +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Euler multicomponent equations + +# 1) Dry Air 2) Helium + 28% Air +equations = CompressibleEulerMulticomponentEquations2D(gammas = (1.4, 1.648), + gas_constants = (0.287, 1.578)) + +""" + initial_condition_shock_bubble(x, t, equations::CompressibleEulerMulticomponentEquations2D{5, 2}) + +A shock-bubble testcase for multicomponent Euler equations +- Ayoub Gouasmi, Karthik Duraisamy, Scott Murman + Formulation of Entropy-Stable schemes for the multicomponent compressible Euler equations + [arXiv: 1904.00972](https://arxiv.org/abs/1904.00972) +""" +function initial_condition_shock_bubble(x, t, + equations::CompressibleEulerMulticomponentEquations2D{ + 5, + 2 + }) + # bubble test case, see Gouasmi et al. https://arxiv.org/pdf/1904.00972 + # other reference: https://www.researchgate.net/profile/Pep_Mulet/publication/222675930_A_flux-split_algorithm_applied_to_conservative_models_for_multicomponent_compressible_flows/links/568da54508aeaa1481ae7af0.pdf + # typical domain is rectangular, we change it to a square, as Trixi can only do squares + @unpack gas_constants = equations + + # Positivity Preserving Parameter, can be set to zero if scheme is positivity preserving + delta = 0.03 + + # Region I + rho1_1 = delta + rho2_1 = 1.225 * gas_constants[1] / gas_constants[2] - delta + v1_1 = zero(delta) + v2_1 = zero(delta) + p_1 = 101325 + + # Region II + rho1_2 = 1.225 - delta + rho2_2 = delta + v1_2 = zero(delta) + v2_2 = zero(delta) + p_2 = 101325 + + # Region III + rho1_3 = 1.6861 - delta + rho2_3 = delta + v1_3 = -113.5243 + v2_3 = zero(delta) + p_3 = 159060 + + # Set up Region I & II: + inicenter = SVector(zero(delta), zero(delta)) + x_norm = x[1] - inicenter[1] + y_norm = x[2] - inicenter[2] + r = sqrt(x_norm^2 + y_norm^2) + + if (x[1] > 0.50) + # Set up Region III + rho1 = rho1_3 + rho2 = rho2_3 + v1 = v1_3 + v2 = v2_3 + p = p_3 + elseif (r < 0.25) + # Set up Region I + rho1 = rho1_1 + rho2 = rho2_1 + v1 = v1_1 + v2 = v2_1 + p = p_1 + else + # Set up Region II + rho1 = rho1_2 + rho2 = rho2_2 + v1 = v1_2 + v2 = v2_2 + p = p_2 + end + + return prim2cons(SVector(v1, v2, p, rho1, rho2), equations) +end +initial_condition = initial_condition_shock_bubble + +surface_flux = flux_lax_friedrichs +volume_flux = flux_ranocha +basis = LobattoLegendreBasis(3) + +limiter_idp = SubcellLimiterIDP(equations, basis; + local_minmax_variables_cons = ["rho" * string(i) + for i in eachcomponent(equations)]) +volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; + volume_flux_dg = volume_flux, + volume_flux_fv = surface_flux) + +solver = DGSEM(basis, surface_flux, volume_integral) + +coordinates_min = (-2.25, -2.225) +coordinates_max = (2.20, 2.225) +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level = 3, + n_cells_max = 1_000_000) + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 0.01) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 300 +analysis_callback = AnalysisCallback(semi, interval = analysis_interval, + extra_analysis_integrals = (Trixi.density,)) + +alive_callback = AliveCallback(analysis_interval = analysis_interval) + +save_solution = SaveSolutionCallback(interval = 600, + save_initial_solution = true, + save_final_solution = true, + solution_variables = cons2prim) + +stepsize_callback = StepsizeCallback(cfl = 0.5) + +callbacks = CallbackSet(summary_callback, + analysis_callback, + alive_callback, + save_solution, + stepsize_callback) + +############################################################################### +# run the simulation + +stage_callbacks = (SubcellLimiterIDPCorrection(), BoundsCheckCallback(save_errors = false)) + +sol = Trixi.solve(ode, Trixi.SimpleSSPRK33(stage_callbacks = stage_callbacks); + dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep = false, callback = callbacks); +summary_callback() # print the timer summary diff --git a/examples/tree_2d_dgsem/elixir_eulermulti_shock_bubble_shockcapturing_subcell_positivity.jl b/examples/tree_2d_dgsem/elixir_eulermulti_shock_bubble_shockcapturing_subcell_positivity.jl index 6241ca30938..7856c9bafbd 100644 --- a/examples/tree_2d_dgsem/elixir_eulermulti_shock_bubble_shockcapturing_subcell_positivity.jl +++ b/examples/tree_2d_dgsem/elixir_eulermulti_shock_bubble_shockcapturing_subcell_positivity.jl @@ -88,9 +88,8 @@ volume_flux = flux_ranocha basis = LobattoLegendreBasis(3) limiter_idp = SubcellLimiterIDP(equations, basis; - positivity_variables_cons = [ - (i + 3 for i in eachcomponent(equations))..., - ]) + positivity_variables_cons = ["rho" * string(i) + for i in eachcomponent(equations)]) volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; volume_flux_dg = volume_flux, diff --git a/examples/tree_2d_dgsem/elixir_mhd_shockcapturing_subcell.jl b/examples/tree_2d_dgsem/elixir_mhd_shockcapturing_subcell.jl index b2cdff2ab53..fe9ad92467f 100644 --- a/examples/tree_2d_dgsem/elixir_mhd_shockcapturing_subcell.jl +++ b/examples/tree_2d_dgsem/elixir_mhd_shockcapturing_subcell.jl @@ -51,7 +51,7 @@ volume_flux = (flux_derigs_etal, flux_nonconservative_powell_local_symmetric) basis = LobattoLegendreBasis(3) limiter_idp = SubcellLimiterIDP(equations, basis; - positivity_variables_cons = [1], + positivity_variables_cons = ["rho"], positivity_correction_factor = 0.5) volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; volume_flux_dg = volume_flux, diff --git a/src/callbacks_stage/subcell_bounds_check.jl b/src/callbacks_stage/subcell_bounds_check.jl index c86f266147c..d7e30ab1621 100644 --- a/src/callbacks_stage/subcell_bounds_check.jl +++ b/src/callbacks_stage/subcell_bounds_check.jl @@ -77,15 +77,24 @@ function init_callback(callback::BoundsCheckCallback, semi, limiter::SubcellLimi return nothing end - (; positivity) = limiter + (; local_minmax, positivity) = limiter (; output_directory) = callback variables = varnames(cons2cons, semi.equations) mkpath(output_directory) open("$output_directory/deviations.txt", "a") do f print(f, "# iter, simu_time") + if local_minmax + for v in limiter.local_minmax_variables_cons + variable_string = string(variables[v]) + print(f, ", " * variable_string * "_min, " * variable_string * "_max") + end + end if positivity for v in limiter.positivity_variables_cons + if v in limiter.local_minmax_variables_cons + continue + end print(f, ", " * string(variables[v]) * "_min") end end @@ -108,15 +117,26 @@ end @inline function finalize_callback(callback::BoundsCheckCallback, semi, limiter::SubcellLimiterIDP) - (; positivity) = limiter + (; local_minmax, positivity) = limiter (; idp_bounds_delta) = limiter.cache variables = varnames(cons2cons, semi.equations) println("─"^100) println("Maximum deviation from bounds:") println("─"^100) + if local_minmax + for v in limiter.local_minmax_variables_cons + v_string = string(v) + println("$(variables[v]):") + println("-lower bound: ", idp_bounds_delta[Symbol(v_string, "_min")][2]) + println("-upper bound: ", idp_bounds_delta[Symbol(v_string, "_max")][2]) + end + end if positivity for v in limiter.positivity_variables_cons + if v in limiter.local_minmax_variables_cons + continue + end println(string(variables[v]) * ":\n- positivity: ", idp_bounds_delta[Symbol(string(v), "_min")][2]) end diff --git a/src/callbacks_stage/subcell_bounds_check_2d.jl b/src/callbacks_stage/subcell_bounds_check_2d.jl index 8159becb503..d52eb6edb9e 100644 --- a/src/callbacks_stage/subcell_bounds_check_2d.jl +++ b/src/callbacks_stage/subcell_bounds_check_2d.jl @@ -8,12 +8,35 @@ @inline function check_bounds(u, mesh::AbstractMesh{2}, equations, solver, cache, limiter::SubcellLimiterIDP, time, iter, output_directory, save_errors) - (; positivity) = solver.volume_integral.limiter + (; local_minmax, positivity) = solver.volume_integral.limiter (; variable_bounds) = limiter.cache.subcell_limiter_coefficients (; idp_bounds_delta) = limiter.cache + if local_minmax + for v in limiter.local_minmax_variables_cons + v_string = string(v) + key_min = Symbol(v_string, "_min") + key_max = Symbol(v_string, "_max") + deviation_min = idp_bounds_delta[key_min] + deviation_max = idp_bounds_delta[key_max] + for element in eachelement(solver, cache), j in eachnode(solver), + i in eachnode(solver) + + var = u[v, i, j, element] + deviation_min[1] = max(deviation_min[1], + variable_bounds[key_min][i, j, element] - var) + deviation_max[1] = max(deviation_max[1], + var - variable_bounds[key_max][i, j, element]) + end + deviation_min[2] = max(deviation_min[2], deviation_min[1]) + deviation_max[2] = max(deviation_max[2], deviation_max[1]) + end + end if positivity for v in limiter.positivity_variables_cons + if v in limiter.local_minmax_variables_cons + continue + end key = Symbol(string(v), "_min") deviation = idp_bounds_delta[key] for element in eachelement(solver, cache), j in eachnode(solver), @@ -30,10 +53,19 @@ # Print to output file open("$output_directory/deviations.txt", "a") do f print(f, iter, ", ", time) + if local_minmax + for v in limiter.local_minmax_variables_cons + v_string = string(v) + print(f, ", ", idp_bounds_delta[Symbol(v_string, "_min")][1], ", ", + idp_bounds_delta[Symbol(v_string, "_max")][1]) + end + end if positivity for v in limiter.positivity_variables_cons - key = Symbol(string(v), "_min") - print(f, ", ", idp_bounds_delta[key][1]) + if v in limiter.local_minmax_variables_cons + continue + end + print(f, ", ", idp_bounds_delta[Symbol(string(v), "_min")][1]) end end println(f) diff --git a/src/equations/equations.jl b/src/equations/equations.jl index 78b1b829b06..ba2ad1cd1cd 100644 --- a/src/equations/equations.jl +++ b/src/equations/equations.jl @@ -42,6 +42,18 @@ Common choices of the `conversion_function` are [`cons2cons`](@ref) and """ function varnames end +# Return the index of `varname` in `varnames(solution_variables, equations)` if available. +# Otherwise, throw an error. +function get_variable_index(varname, equations; + solution_variables = cons2cons) + index = findfirst(==(varname), varnames(solution_variables, equations)) + if isnothing(index) + throw(ArgumentError("$varname is no valid variable.")) + end + + return index +end + # Add methods to show some information on systems of equations. function Base.show(io::IO, equations::AbstractEquations) # Since this is not performance-critical, we can use `@nospecialize` to reduce latency. @@ -211,8 +223,8 @@ end """ NonConservativeLocal() -Struct used for multiple dispatch on non-conservative flux functions in the format of "local * symmetric". -When the argument `nonconservative_type` is of type `NonConservativeLocal`, +Struct used for multiple dispatch on non-conservative flux functions in the format of "local * symmetric". +When the argument `nonconservative_type` is of type `NonConservativeLocal`, the function returns the local part of the non-conservative term. """ struct NonConservativeLocal end @@ -220,8 +232,8 @@ struct NonConservativeLocal end """ NonConservativeSymmetric() -Struct used for multiple dispatch on non-conservative flux functions in the format of "local * symmetric". -When the argument `nonconservative_type` is of type `NonConservativeSymmetric`, +Struct used for multiple dispatch on non-conservative flux functions in the format of "local * symmetric". +When the argument `nonconservative_type` is of type `NonConservativeSymmetric`, the function returns the symmetric part of the non-conservative term. """ struct NonConservativeSymmetric end diff --git a/src/solvers/dg.jl b/src/solvers/dg.jl index 91ad59b76b6..9e5ebc7f9b5 100644 --- a/src/solvers/dg.jl +++ b/src/solvers/dg.jl @@ -191,6 +191,12 @@ end A subcell limiting volume integral type for DG methods based on subcell blending approaches with a low-order FV method. Used with limiter [`SubcellLimiterIDP`](@ref). +!!! note + Subcell limiting methods are not fully functional on non-conforming meshes. This is + mainly because the implementation assumes that low- and high-order schemes have the same + surface terms, which is not guaranteed for non-conforming meshes. The low-order scheme + with a high-order mortar is not invariant domain preserving. + !!! warning "Experimental implementation" This is an experimental feature and may change in future releases. """ diff --git a/src/solvers/dgsem_tree/dg_2d_subcell_limiters.jl b/src/solvers/dgsem_tree/dg_2d_subcell_limiters.jl index 97843db7743..2fc62f548d2 100644 --- a/src/solvers/dgsem_tree/dg_2d_subcell_limiters.jl +++ b/src/solvers/dgsem_tree/dg_2d_subcell_limiters.jl @@ -463,4 +463,21 @@ end return nothing end + +""" + get_boundary_outer_state(boundary_condition::BoundaryConditionDirichlet, + cache, t, equations, dg, indices...) +For subcell limiting, the calculation of local bounds for non-periodic domains require the boundary +outer state. This function returns the boundary value at time `t` and for node with spatial +indices `indices`. +""" +@inline function get_boundary_outer_state(boundary_condition::BoundaryConditionDirichlet, + cache, t, equations, dg, indices...) + (; node_coordinates) = cache.elements + + x = get_node_coords(node_coordinates, equations, dg, indices...) + u_outer = boundary_condition.boundary_value_function(x, t, equations) + + return u_outer +end end # @muladd diff --git a/src/solvers/dgsem_tree/subcell_limiters.jl b/src/solvers/dgsem_tree/subcell_limiters.jl index 55d402954bf..055e7ce24a4 100644 --- a/src/solvers/dgsem_tree/subcell_limiters.jl +++ b/src/solvers/dgsem_tree/subcell_limiters.jl @@ -14,12 +14,17 @@ end """ SubcellLimiterIDP(equations::AbstractEquations, basis; - positivity_variables_cons = [], + local_minmax_variables_cons = String[], + positivity_variables_cons = String[], positivity_correction_factor = 0.1) Subcell invariant domain preserving (IDP) limiting used with [`VolumeIntegralSubcellLimiting`](@ref) including: -- positivity limiting for conservative variables (`positivity_variables_cons`) +- Local maximum/minimum Zalesak-type limiting for conservative variables (`local_minmax_variables_cons`) +- Positivity limiting for conservative variables (`positivity_variables_cons`) + +Conservative variables to be limited are passed as a vector of strings, e.g. `local_minmax_variables_cons = ["rho"]` +and `positivity_variables_cons = ["rho"]`. The bounds are calculated using the low-order FV solution. The positivity limiter uses `positivity_correction_factor` such that `u^new >= positivity_correction_factor * u^FV`. @@ -41,62 +46,95 @@ The bounds are calculated using the low-order FV solution. The positivity limite This is an experimental feature and may change in future releases. """ struct SubcellLimiterIDP{RealT <: Real, Cache} <: AbstractSubcellLimiter + local_minmax::Bool + local_minmax_variables_cons::Vector{Int} # Local mininum/maximum principles for conservative variables positivity::Bool positivity_variables_cons::Vector{Int} # Positivity for conservative variables positivity_correction_factor::RealT cache::Cache end -# this method is used when the indicator is constructed as for shock-capturing volume integrals +# this method is used when the limiter is constructed as for shock-capturing volume integrals function SubcellLimiterIDP(equations::AbstractEquations, basis; - positivity_variables_cons = [], + local_minmax_variables_cons = String[], + positivity_variables_cons = String[], positivity_correction_factor = 0.1) + local_minmax = (length(local_minmax_variables_cons) > 0) positivity = (length(positivity_variables_cons) > 0) - bound_keys = Tuple(Symbol(string(v), "_min") for v in positivity_variables_cons) + local_minmax_variables_cons_ = get_variable_index.(local_minmax_variables_cons, + equations) + positivity_variables_cons_ = get_variable_index.(positivity_variables_cons, + equations) + + bound_keys = () + if local_minmax + for v in local_minmax_variables_cons_ + v_string = string(v) + bound_keys = (bound_keys..., Symbol(v_string, "_min"), + Symbol(v_string, "_max")) + end + end + for v in positivity_variables_cons_ + if !(v in local_minmax_variables_cons_) + bound_keys = (bound_keys..., Symbol(string(v), "_min")) + end + end cache = create_cache(SubcellLimiterIDP, equations, basis, bound_keys) - SubcellLimiterIDP{typeof(positivity_correction_factor), typeof(cache)}(positivity, - positivity_variables_cons, - positivity_correction_factor, - cache) + SubcellLimiterIDP{typeof(positivity_correction_factor), + typeof(cache)}(local_minmax, local_minmax_variables_cons_, + positivity, positivity_variables_cons_, + positivity_correction_factor, cache) end function Base.show(io::IO, limiter::SubcellLimiterIDP) @nospecialize limiter # reduce precompilation time - @unpack positivity = limiter + (; local_minmax, positivity) = limiter print(io, "SubcellLimiterIDP(") - if !(positivity) + if !(local_minmax || positivity) print(io, "No limiter selected => pure DG method") else print(io, "limiter=(") + local_minmax && print(io, "min/max limiting, ") positivity && print(io, "positivity") print(io, "), ") end + print(io, "Local bounds with FV solution") print(io, ")") end function Base.show(io::IO, ::MIME"text/plain", limiter::SubcellLimiterIDP) @nospecialize limiter # reduce precompilation time - @unpack positivity = limiter + (; local_minmax, positivity) = limiter if get(io, :compact, false) show(io, limiter) else - if !(positivity) + if !(local_minmax || positivity) setup = ["limiter" => "No limiter selected => pure DG method"] else setup = ["limiter" => ""] + if local_minmax + setup = [ + setup..., + "" => "local maximum/minimum bounds for conservative variables $(limiter.local_minmax_variables_cons)", + ] + end if positivity - string = "positivity with conservative variables $(limiter.positivity_variables_cons)" + string = "positivity for conservative variables $(limiter.positivity_variables_cons)" setup = [setup..., "" => string] setup = [ setup..., "" => " positivity correction factor = $(limiter.positivity_correction_factor)", ] end + setup = [ + setup..., + "Local bounds" => "FV solution", + ] end summary_box(io, "SubcellLimiterIDP", setup) end diff --git a/src/solvers/dgsem_tree/subcell_limiters_2d.jl b/src/solvers/dgsem_tree/subcell_limiters_2d.jl index 0a72b79ea3f..bc69e55f264 100644 --- a/src/solvers/dgsem_tree/subcell_limiters_2d.jl +++ b/src/solvers/dgsem_tree/subcell_limiters_2d.jl @@ -30,6 +30,10 @@ function (limiter::SubcellLimiterIDP)(u::AbstractArray{<:Any, 4}, semi, dg::DGSE @unpack alpha = limiter.cache.subcell_limiter_coefficients alpha .= zero(eltype(alpha)) + if limiter.local_minmax + @trixi_timeit timer() "local min/max limiting" idp_local_minmax!(alpha, limiter, + u, t, dt, semi) + end if limiter.positivity @trixi_timeit timer() "positivity" idp_positivity!(alpha, limiter, u, dt, semi) end @@ -52,6 +56,173 @@ function (limiter::SubcellLimiterIDP)(u::AbstractArray{<:Any, 4}, semi, dg::DGSE return nothing end +@inline function calc_bounds_twosided!(var_min, var_max, variable, u, t, semi) + mesh, equations, dg, cache = mesh_equations_solver_cache(semi) + # Calc bounds inside elements + @threaded for element in eachelement(dg, cache) + var_min[:, :, element] .= typemax(eltype(var_min)) + var_max[:, :, element] .= typemin(eltype(var_max)) + # Calculate bounds at Gauss-Lobatto nodes using u + for j in eachnode(dg), i in eachnode(dg) + var = u[variable, i, j, element] + var_min[i, j, element] = min(var_min[i, j, element], var) + var_max[i, j, element] = max(var_max[i, j, element], var) + + if i > 1 + var_min[i - 1, j, element] = min(var_min[i - 1, j, element], var) + var_max[i - 1, j, element] = max(var_max[i - 1, j, element], var) + end + if i < nnodes(dg) + var_min[i + 1, j, element] = min(var_min[i + 1, j, element], var) + var_max[i + 1, j, element] = max(var_max[i + 1, j, element], var) + end + if j > 1 + var_min[i, j - 1, element] = min(var_min[i, j - 1, element], var) + var_max[i, j - 1, element] = max(var_max[i, j - 1, element], var) + end + if j < nnodes(dg) + var_min[i, j + 1, element] = min(var_min[i, j + 1, element], var) + var_max[i, j + 1, element] = max(var_max[i, j + 1, element], var) + end + end + end + + # Values at element boundary + calc_bounds_twosided_interface!(var_min, var_max, variable, u, t, semi, mesh) +end + +@inline function calc_bounds_twosided_interface!(var_min, var_max, variable, u, t, semi, + mesh::TreeMesh2D) + _, equations, dg, cache = mesh_equations_solver_cache(semi) + (; boundary_conditions) = semi + # Calc bounds at interfaces and periodic boundaries + for interface in eachinterface(dg, cache) + # Get neighboring element ids + left = cache.interfaces.neighbor_ids[1, interface] + right = cache.interfaces.neighbor_ids[2, interface] + + orientation = cache.interfaces.orientations[interface] + + for i in eachnode(dg) + index_left = (nnodes(dg), i) + index_right = (1, i) + if orientation == 2 + index_left = reverse(index_left) + index_right = reverse(index_right) + end + var_left = u[variable, index_left..., left] + var_right = u[variable, index_right..., right] + + var_min[index_right..., right] = min(var_min[index_right..., right], + var_left) + var_max[index_right..., right] = max(var_max[index_right..., right], + var_left) + + var_min[index_left..., left] = min(var_min[index_left..., left], var_right) + var_max[index_left..., left] = max(var_max[index_left..., left], var_right) + end + end + + # Calc bounds at physical boundaries + for boundary in eachboundary(dg, cache) + element = cache.boundaries.neighbor_ids[boundary] + orientation = cache.boundaries.orientations[boundary] + neighbor_side = cache.boundaries.neighbor_sides[boundary] + + for i in eachnode(dg) + if neighbor_side == 2 # Element is on the right, boundary on the left + index = (1, i) + boundary_index = 1 + else # Element is on the left, boundary on the right + index = (nnodes(dg), i) + boundary_index = 2 + end + if orientation == 2 + index = reverse(index) + boundary_index += 2 + end + u_outer = get_boundary_outer_state(boundary_conditions[boundary_index], + cache, t, equations, dg, + index..., element) + var_outer = u_outer[variable] + + var_min[index..., element] = min(var_min[index..., element], var_outer) + var_max[index..., element] = max(var_max[index..., element], var_outer) + end + end + + return nothing +end + +@inline function idp_local_minmax!(alpha, limiter, u, t, dt, semi) + for variable in limiter.local_minmax_variables_cons + idp_local_minmax!(alpha, limiter, u, t, dt, semi, variable) + end + + return nothing +end + +@inline function idp_local_minmax!(alpha, limiter, u, t, dt, semi, variable) + _, _, dg, cache = mesh_equations_solver_cache(semi) + (; antidiffusive_flux1_L, antidiffusive_flux2_L, antidiffusive_flux1_R, antidiffusive_flux2_R) = cache.antidiffusive_fluxes + (; inverse_weights) = dg.basis + + (; variable_bounds) = limiter.cache.subcell_limiter_coefficients + variable_string = string(variable) + var_min = variable_bounds[Symbol(variable_string, "_min")] + var_max = variable_bounds[Symbol(variable_string, "_max")] + calc_bounds_twosided!(var_min, var_max, variable, u, t, semi) + + @threaded for element in eachelement(dg, semi.cache) + inverse_jacobian = cache.elements.inverse_jacobian[element] + for j in eachnode(dg), i in eachnode(dg) + var = u[variable, i, j, element] + # Real Zalesak type limiter + # * Zalesak (1979). "Fully multidimensional flux-corrected transport algorithms for fluids" + # * Kuzmin et al. (2010). "Failsafe flux limiting and constrained data projections for equations of gas dynamics" + # Note: The Zalesak limiter has to be computed, even if the state is valid, because the correction is + # for each interface, not each node + + Qp = max(0, (var_max[i, j, element] - var) / dt) + Qm = min(0, (var_min[i, j, element] - var) / dt) + + # Calculate Pp and Pm + # Note: Boundaries of antidiffusive_flux1/2 are constant 0, so they make no difference here. + val_flux1_local = inverse_weights[i] * + antidiffusive_flux1_R[variable, i, j, element] + val_flux1_local_ip1 = -inverse_weights[i] * + antidiffusive_flux1_L[variable, i + 1, j, element] + val_flux2_local = inverse_weights[j] * + antidiffusive_flux2_R[variable, i, j, element] + val_flux2_local_jp1 = -inverse_weights[j] * + antidiffusive_flux2_L[variable, i, j + 1, element] + + Pp = max(0, val_flux1_local) + max(0, val_flux1_local_ip1) + + max(0, val_flux2_local) + max(0, val_flux2_local_jp1) + Pm = min(0, val_flux1_local) + min(0, val_flux1_local_ip1) + + min(0, val_flux2_local) + min(0, val_flux2_local_jp1) + + Qp = max(0, (var_max[i, j, element] - var) / dt) + Qm = min(0, (var_min[i, j, element] - var) / dt) + + Pp = inverse_jacobian * Pp + Pm = inverse_jacobian * Pm + + # Compute blending coefficient avoiding division by zero + # (as in paper of [Guermond, Nazarov, Popov, Thomas] (4.8)) + Qp = abs(Qp) / + (abs(Pp) + eps(typeof(Qp)) * 100 * abs(var_max[i, j, element])) + Qm = abs(Qm) / + (abs(Pm) + eps(typeof(Qm)) * 100 * abs(var_max[i, j, element])) + + # Calculate alpha at nodes + alpha[i, j, element] = max(alpha[i, j, element], 1 - min(1, Qp, Qm)) + end + end + + return nothing +end + @inline function idp_positivity!(alpha, limiter, u, dt, semi) # Conservative variables for variable in limiter.positivity_variables_cons @@ -79,6 +250,13 @@ end end # Compute bound + if limiter.local_minmax && + variable in limiter.local_minmax_variables_cons && + var_min[i, j, element] >= positivity_correction_factor * var + # Local limiting is more restrictive that positivity limiting + # => Skip positivity limiting for this node + continue + end var_min[i, j, element] = positivity_correction_factor * var # Real one-sided Zalesak-type limiter diff --git a/test/test_tree_2d_euler.jl b/test/test_tree_2d_euler.jl index 4a1dc42772d..04a295537a3 100644 --- a/test/test_tree_2d_euler.jl +++ b/test/test_tree_2d_euler.jl @@ -313,6 +313,34 @@ end end end +@trixi_testset "elixir_euler_blast_wave_sc_subcell_nonperiodic.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, + "elixir_euler_blast_wave_sc_subcell_nonperiodic.jl"), + l2=[ + 0.3517507570120483, + 0.19252291020146015, + 0.19249751956580294, + 0.618717827188004, + ], + linf=[ + 1.6699566795772216, + 1.3608007992899402, + 1.361864507190922, + 2.44022884092527, + ], + tspan=(0.0, 0.5), + initial_refinement_level=4, + coverage_override=(maxiters = 6,)) + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 15000 + end +end + @trixi_testset "elixir_euler_sedov_blast_wave.jl" begin @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_euler_sedov_blast_wave.jl"), l2=[ @@ -339,6 +367,34 @@ end end end +@trixi_testset "elixir_euler_sedov_blast_wave_sc_subcell.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, + "elixir_euler_sedov_blast_wave_sc_subcell.jl"), + l2=[ + 0.4328635350273501, + 0.15011135840723572, + 0.15011135840723572, + 0.616129927549474, + ], + linf=[ + 1.6145297181778906, + 0.8614006163026988, + 0.8614006163026972, + 6.450225090647602, + ], + tspan=(0.0, 1.0), + initial_refinement_level=4, + coverage_override=(maxiters = 6,)) + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 15000 + end +end + @trixi_testset "elixir_euler_sedov_blast_wave.jl (HLLE)" begin @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_euler_sedov_blast_wave.jl"), l2=[ diff --git a/test/test_tree_2d_eulermulti.jl b/test/test_tree_2d_eulermulti.jl index 2e808af6473..30d52b37b96 100644 --- a/test/test_tree_2d_eulermulti.jl +++ b/test/test_tree_2d_eulermulti.jl @@ -75,6 +75,35 @@ end end end +@trixi_testset "elixir_eulermulti_shock_bubble_shockcapturing_subcell_minmax.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, + "elixir_eulermulti_shock_bubble_shockcapturing_subcell_minmax.jl"), + l2=[ + 73.10832638093902, + 1.4599215762968585, + 57176.014861335476, + 0.17812843581838675, + 0.010123079422717837, + ], + linf=[ + 214.50568817511956, + 25.40392579616452, + 152862.41011222568, + 0.564195553101797, + 0.0956331651771212, + ], + initial_refinement_level=3, + tspan=(0.0, 0.001)) + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 15000 + end +end + @trixi_testset "elixir_eulermulti_ec.jl" begin @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_eulermulti_ec.jl"), l2=[ diff --git a/test/test_unit.jl b/test/test_unit.jl index 1d768c0df69..0c5f2bf0a4c 100644 --- a/test/test_unit.jl +++ b/test/test_unit.jl @@ -414,7 +414,7 @@ end indicator_hg = IndicatorHennemannGassner(1.0, 0.0, true, "variable", "cache") @test_nowarn show(stdout, indicator_hg) - limiter_idp = SubcellLimiterIDP(true, [1], 0.1, "cache") + limiter_idp = SubcellLimiterIDP(true, [1], true, [1], 0.1, "cache") @test_nowarn show(stdout, limiter_idp) # TODO: TrixiShallowWater: move unit test