-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbaseline_sa.py
108 lines (102 loc) · 5.08 KB
/
baseline_sa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import random
from copy import deepcopy
from math import log
from typing import List
from tqdm import tqdm
from common import (Solution, bp_shelf, perm_by_area_, perm_by_height_,
perm_by_width_)
class SA:
def __init__(self, orders: List[List[int]], max_parts: int, perm_algo='height', device='cpu'):
self.orders = orders
self.max_parts = max_parts
if perm_algo == 'height':
self.perm_algo = perm_by_height_
elif perm_algo == 'width':
self.perm_algo = perm_by_width_
elif perm_algo == 'area':
self.perm_algo = perm_by_area_
else:
raise ValueError
def bp_batch(self, batch):
return [i and bp_shelf(self.perm_algo(i)) for i in batch]
def search(self, sol: Solution, num_iter=1000, reset=100, topk=1000, use_tqdm=False, _track=None):
assert len(sol.plan) > 1
best_sol = deepcopy(sol)
init_cost = best_cost = current_cost = sol.cost
if _track is not None:
_track.append(init_cost)
with tqdm(range(num_iter), disable=not use_tqdm) as bar:
for it in bar:
if (it + 1) % reset == 0:
sol = deepcopy(best_sol)
current_cost = best_cost
a, b = random.sample(range(len(sol.plan)), 2)
a_plan, a_bins = sol.plan[a], sol.bins[a]
b_plan, b_bins = sol.plan[b], sol.bins[b]
la = sum(len(self.orders[i]) for i in a_plan)
lb = sum(len(self.orders[i]) for i in b_plan)
if random.random() < 0.5:
s = [i for i in a_plan if len(self.orders[i]) + lb <= self.max_parts]
if s:
if len(s) > topk:
s = random.sample(s, topk)
best = 1e999
best_i = -1
best_bins = None
p = [k for j in b_plan for k in self.orders[j]]
batch = sum(([
[k for j in a_plan if j != i for k in self.orders[j]],
p + self.orders[i]
] for i in s), [])
for i, nb1, nb2 in zip(s, *[iter(self.bp_batch(batch))] * 2):
t = len(nb1) + len(nb2) - (len(a_bins) + len(b_bins))
if t < best:
best = t
best_i = i
best_bins = nb1, nb2
if best_bins and best < -log(random.random()) * (1 - (it + 1) / num_iter):
a_bins[:], b_bins[:] = best_bins
b_plan.append(best_i)
if not a_bins:
del sol.plan[a]
del sol.bins[a]
else:
a_plan.remove(best_i)
current_cost += best
if current_cost < best_cost:
best_sol = deepcopy(sol)
best_cost = current_cost
assert best_sol.cost == best_cost
bar.set_description(f'{init_cost} {best_cost} {current_cost}')
else:
t = [[i, j] for i in a_plan for j in b_plan if la - len(self.orders[i]) + len(self.orders[j]) <= self.max_parts and lb +
len(self.orders[i]) - len(self.orders[j]) <= self.max_parts]
best = 1e999
best_xy = None
best_bins = None
if len(t) > topk:
t = random.sample(t, topk)
batch = sum(([
[k for j in a_plan if j != x for k in self.orders[j]] + self.orders[y],
[k for j in b_plan if j != y for k in self.orders[j]] + self.orders[x]
] for x, y in t), [])
for (x, y), nb1, nb2 in zip(t, *[iter(self.bp_batch(batch))] * 2):
t = len(nb1) + len(nb2) - (len(a_bins) + len(b_bins))
if t < best:
best = t
best_xy = x, y
best_bins = nb1, nb2
if best_bins and best < -log(random.random()) * (1 - (it + 1) / num_iter):
a_bins[:], b_bins[:] = best_bins
x, y = best_xy
a_plan[a_plan.index(x)] = y
b_plan[b_plan.index(y)] = x
current_cost += best
if current_cost < best_cost:
best_sol = deepcopy(sol)
best_cost = current_cost
assert best_sol.cost == best_cost
bar.set_description(f'{init_cost} {best_cost} {current_cost}')
if _track is not None:
_track.append(current_cost)
return best_sol