-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathtrain.py
210 lines (188 loc) · 8.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from __future__ import division
from __future__ import print_function
import argparse
import os
import shutil
import time
import warnings
import chainer
from chainer import optimizers
import numpy as np
import six
from lib import iproc
from lib import srcnn
from lib import utils
from lib.dataset_sampler import DatasetSampler
from lib.loss import clipped_weighted_huber_loss
def train_inner_epoch(model, weight, optimizer, data_queue, batch_size):
sum_loss = 0
xp = model.xp
train_x, train_y = data_queue.get()
perm = np.random.permutation(len(train_x))
for i in six.moves.range(0, len(train_x), batch_size):
local_perm = perm[i:i + batch_size]
batch_x = xp.array(train_x[local_perm], dtype=np.float32) / 255
batch_y = xp.array(train_y[local_perm], dtype=np.float32) / 255
model.cleargrads()
pred = model(batch_x)
# loss = F.mean_squared_error(pred, batch_y)
loss = clipped_weighted_huber_loss(pred, batch_y, weight)
loss.backward()
optimizer.update()
sum_loss += float(loss.data) * len(batch_x)
return sum_loss / len(train_x)
def valid_inner_epoch(model, data_queue, batch_size):
sum_score = 0
xp = model.xp
valid_x, valid_y = data_queue.get()
perm = np.random.permutation(len(valid_x))
with chainer.no_backprop_mode(), chainer.using_config('train', False):
for i in six.moves.range(0, len(valid_x), batch_size):
local_perm = perm[i:i + batch_size]
batch_x = xp.array(valid_x[local_perm], dtype=np.float32) / 255
batch_y = xp.array(valid_y[local_perm], dtype=np.float32) / 255
pred = model(batch_x)
score = iproc.clipped_psnr(pred.data, batch_y)
sum_score += float(score) * len(batch_x)
return sum_score / len(valid_x)
def main():
p = argparse.ArgumentParser(description='Chainer implementation of waifu2x')
p.add_argument('--gpu', '-g', type=int, default=-1)
p.add_argument('--seed', '-s', type=int, default=11)
p.add_argument('--dataset_dir', '-d', required=True)
p.add_argument('--validation_rate', type=float, default=0.05)
p.add_argument('--nr_rate', type=float, default=0.65)
p.add_argument('--chroma_subsampling_rate', type=float, default=0.5)
p.add_argument('--reduce_memory_usage', action='store_true')
p.add_argument('--out_size', type=int, default=64)
p.add_argument('--max_size', type=int, default=256)
p.add_argument('--active_cropping_rate', type=float, default=0.5)
p.add_argument('--active_cropping_tries', type=int, default=10)
p.add_argument('--random_half_rate', type=float, default=0.0)
p.add_argument('--random_color_noise_rate', type=float, default=0.0)
p.add_argument('--random_unsharp_mask_rate', type=float, default=0.0)
p.add_argument('--learning_rate', type=float, default=0.00025)
p.add_argument('--lr_min', type=float, default=0.00001)
p.add_argument('--lr_decay', type=float, default=0.9)
p.add_argument('--lr_decay_interval', type=int, default=5)
p.add_argument('--batch_size', '-b', type=int, default=16)
p.add_argument('--patches', '-p', type=int, default=64)
p.add_argument('--validation_crop_rate', type=float, default=0.5)
p.add_argument('--downsampling_filters', nargs='+', default=['box'])
p.add_argument('--resize_blur_min', type=float, default=0.95)
p.add_argument('--resize_blur_max', type=float, default=1.05)
p.add_argument('--epoch', '-e', type=int, default=50)
p.add_argument('--inner_epoch', type=int, default=4)
p.add_argument('--finetune', '-f', default=None)
p.add_argument('--model_name', default=None)
p.add_argument('--color', '-c', default='rgb',
choices=['y', 'rgb'])
p.add_argument('--arch', '-a', default='VGG7',
choices=['VGG7', '0', 'UpConv7', '1', 'ResNet10', '2', 'UpResNet10', '3'])
p.add_argument('--method', '-m', default='scale',
choices=['noise', 'scale', 'noise_scale'],)
p.add_argument('--noise_level', '-n', type=int, default=1,
choices=[0, 1, 2, 3])
args = p.parse_args()
if args.arch in srcnn.table:
args.arch = srcnn.table[args.arch]
utils.set_random_seed(args.seed, args.gpu)
if args.color == 'y':
ch = 1
weight = (1.0,)
elif args.color == 'rgb':
ch = 3
weight = (0.29891 * 3, 0.58661 * 3, 0.11448 * 3)
weight = np.array(weight, dtype=np.float32)
weight = weight[:, np.newaxis, np.newaxis]
print('* loading filelist...', end=' ')
filelist = utils.load_filelist(args.dataset_dir, shuffle=True)
valid_num = int(np.ceil(args.validation_rate * len(filelist)))
valid_list, train_list = filelist[:valid_num], filelist[valid_num:]
print('done')
print('* setup model...', end=' ')
if args.model_name is None:
if args.method == 'noise':
model_name = 'anime_style_noise{}'.format(args.noise_level)
elif args.method == 'scale':
model_name = 'anime_style_scale'
elif args.method == 'noise_scale':
model_name = 'anime_style_noise{}_scale'.format(args.noise_level)
model_path = '{}_{}.npz'.format(model_name, args.color)
else:
model_name = args.model_name.rstrip('.npz')
model_path = model_name + '.npz'
if not os.path.exists('epoch'):
os.makedirs('epoch')
model = srcnn.archs[args.arch](ch)
if model.offset % model.inner_scale != 0:
raise ValueError('offset %% inner_scale must be 0.')
elif model.inner_scale != 1 and model.inner_scale % 2 != 0:
raise ValueError('inner_scale must be 1 or an even number.')
if args.finetune is not None:
chainer.serializers.load_npz(args.finetune, model)
if args.gpu >= 0:
chainer.backends.cuda.check_cuda_available()
chainer.backends.cuda.get_device(args.gpu).use()
weight = chainer.backends.cuda.to_gpu(weight)
model.to_gpu()
optimizer = optimizers.Adam(alpha=args.learning_rate)
optimizer.setup(model)
print('done')
valid_config = utils.get_config(args, model, train=False)
train_config = utils.get_config(args, model, train=True)
print('* check forward path...', end=' ')
di = train_config.in_size
do = train_config.out_size
dx = model.xp.zeros((args.batch_size, ch, di, di), dtype=np.float32)
dy = model(dx)
if dy.shape[2:] != (do, do):
raise ValueError('Invlid output size\n'
'Expect: {}\n'
'Actual: ({}, {})'.format(dy.shape[2:], do, do))
print('done')
print('* starting processes of dataset sampler...', end=' ')
valid_queue = DatasetSampler(valid_list, valid_config)
train_queue = DatasetSampler(train_list, train_config)
print('done')
best_count = 0
best_score = 0
best_loss = np.inf
for epoch in range(0, args.epoch):
print('### epoch: {} ###'.format(epoch))
train_queue.reload_switch(init=(epoch < args.epoch - 1))
for inner_epoch in range(0, args.inner_epoch):
best_count += 1
print(' # inner epoch: {}'.format(inner_epoch))
start = time.time()
train_loss = train_inner_epoch(
model, weight, optimizer, train_queue, args.batch_size)
if args.reduce_memory_usage:
train_queue.wait()
if train_loss < best_loss:
best_loss = train_loss
print(' * best loss on training dataset: {:.6f}'.format(
train_loss))
valid_score = valid_inner_epoch(
model, valid_queue, args.batch_size)
if valid_score > best_score:
best_count = 0
best_score = valid_score
print(' * best score on validation dataset: PSNR {:.6f} dB'
.format(valid_score))
best_model = model.copy().to_cpu()
epoch_path = 'epoch/{}_epoch{}.npz'.format(model_name, epoch)
chainer.serializers.save_npz(model_path, best_model)
shutil.copy(model_path, epoch_path)
if best_count >= args.lr_decay_interval:
best_count = 0
optimizer.alpha *= args.lr_decay
if optimizer.alpha < args.lr_min:
optimizer.alpha = args.lr_min
else:
print(' * learning rate decay: {:.6f}'.format(
optimizer.alpha))
print(' * elapsed time: {:.6f} sec'.format(time.time() - start))
if __name__ == '__main__':
warnings.filterwarnings('ignore')
main()