Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

training custom model, is this accuracy reasonable? #30

Open
mugenZebra opened this issue Aug 3, 2020 · 0 comments
Open

training custom model, is this accuracy reasonable? #30

mugenZebra opened this issue Aug 3, 2020 · 0 comments

Comments

@mugenZebra
Copy link

mugenZebra commented Aug 3, 2020

!python /content/waifu2x-chainer/train.py --gpu 0 --dataset_dir ./jpg --patches 32 --epoch 10 --model_name reference_scale_rgb --downsampling_filters box lanczos --lr_decay_interval 3 --arch UpConv7
/usr/local/lib/python3.6/dist-packages/chainer/_environment_check.py:91: UserWarning:


Multiple installations of CuPy package has been detected.
You should select only one package from from ['cupy-cuda102', 'cupy-cuda101', 'cupy-cuda100', 'cupy-cuda92', 'cupy-cuda91', 'cupy-cuda90', 'cupy-cuda80', 'cupy'].
Follow these steps to resolve this issue:

  1. pip list to list CuPy packages installed
  2. pip uninstall <package name> to uninstall all CuPy packages
  3. pip install <package name> to install the proper one

'''.format(name=name, pkgs=pkgs))

  • loading filelist... done
  • setup model... done
  • check forward path... done
  • starting processes of dataset sampler... done

epoch: 0

inner epoch: 0

* best loss on training dataset: 0.002381
* best score on validation dataset: PSNR 22.072546 dB
* elapsed time: 881.055754 sec

inner epoch: 1

* best loss on training dataset: 0.001941
* best score on validation dataset: PSNR 22.579106 dB
* elapsed time: 103.186740 sec

inner epoch: 2

* best loss on training dataset: 0.001810
* best score on validation dataset: PSNR 22.679653 dB
* elapsed time: 97.545877 sec

inner epoch: 3

* best loss on training dataset: 0.001732
* best score on validation dataset: PSNR 23.013222 dB
* elapsed time: 91.364418 sec

epoch: 1

inner epoch: 0

* best score on validation dataset: PSNR 23.169959 dB
* elapsed time: 106.030671 sec

inner epoch: 1

* best loss on training dataset: 0.001652
* best score on validation dataset: PSNR 23.181128 dB
* elapsed time: 102.384226 sec

inner epoch: 2

* best loss on training dataset: 0.001593
* best score on validation dataset: PSNR 23.337347 dB
* elapsed time: 99.998622 sec

inner epoch: 3

* best loss on training dataset: 0.001545
* elapsed time: 91.267800 sec

epoch: 2

inner epoch: 0

* best score on validation dataset: PSNR 23.427455 dB
* elapsed time: 106.444332 sec

inner epoch: 1

* elapsed time: 103.891084 sec

inner epoch: 2

* best loss on training dataset: 0.001530
* elapsed time: 98.481055 sec

inner epoch: 3

* best loss on training dataset: 0.001489
* best score on validation dataset: PSNR 23.479888 dB
* elapsed time: 91.023230 sec

epoch: 3

inner epoch: 0

* best score on validation dataset: PSNR 23.528935 dB
* elapsed time: 106.155661 sec

inner epoch: 1

* elapsed time: 103.248413 sec

inner epoch: 2

* best loss on training dataset: 0.001455
* elapsed time: 98.362952 sec

inner epoch: 3

* best loss on training dataset: 0.001421
* learning rate decay: 0.000225
* elapsed time: 90.741462 sec

epoch: 4

inner epoch: 0

* best score on validation dataset: PSNR 23.533943 dB
* elapsed time: 105.805502 sec

inner epoch: 1

* best score on validation dataset: PSNR 23.573726 dB
* elapsed time: 103.978917 sec

inner epoch: 2

* best score on validation dataset: PSNR 23.623575 dB
* elapsed time: 99.085195 sec

inner epoch: 3

* best loss on training dataset: 0.001405
* best score on validation dataset: PSNR 23.658209 dB
* elapsed time: 91.353107 sec

epoch: 5

inner epoch: 0

* best score on validation dataset: PSNR 23.710338 dB
* elapsed time: 106.360211 sec

inner epoch: 1

* best score on validation dataset: PSNR 23.714681 dB
* elapsed time: 104.392316 sec

inner epoch: 2

* elapsed time: 99.168070 sec

inner epoch: 3

* best loss on training dataset: 0.001383
* elapsed time: 91.488422 sec

epoch: 6

inner epoch: 0

* best score on validation dataset: PSNR 23.732231 dB
* elapsed time: 107.400784 sec

inner epoch: 1

* best score on validation dataset: PSNR 23.761270 dB
* elapsed time: 105.255023 sec

inner epoch: 2

* elapsed time: 99.553206 sec

inner epoch: 3

* elapsed time: 91.538299 sec

epoch: 7

inner epoch: 0

* best score on validation dataset: PSNR 23.764517 dB
* elapsed time: 106.978499 sec

inner epoch: 1

* elapsed time: 104.257074 sec

inner epoch: 2

* elapsed time: 99.090099 sec

inner epoch: 3

* best loss on training dataset: 0.001361
* learning rate decay: 0.000203
* elapsed time: 91.054147 sec

epoch: 8

inner epoch: 0

* best score on validation dataset: PSNR 23.816657 dB
* elapsed time: 105.482888 sec

inner epoch: 1

* best score on validation dataset: PSNR 23.883949 dB
* elapsed time: 104.894173 sec

inner epoch: 2

* elapsed time: 99.114435 sec

inner epoch: 3

* elapsed time: 90.749769 sec

epoch: 9

inner epoch: 0

* learning rate decay: 0.000182
* elapsed time: 92.891063 sec

inner epoch: 1

* elapsed time: 90.760490 sec

inner epoch: 2

* elapsed time: 90.826175 sec

inner epoch: 3

* best loss on training dataset: 0.001345
* learning rate decay: 0.000164
* elapsed time: 90.922554 sec`

I read that the PSNR for the pretrained model is 30+, is 23dB too low? Maybe my training set is bad? My training set consists of mostly black and white images, specifically Japanese comic book pages, if that matters.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant