-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
170 lines (143 loc) · 5.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import torch
import yaml
from speaker_embeddings import *
from catalyst.dl.runner import SupervisedWandbRunner as SupervisedRunner
from catalyst.dl.callbacks import (AccuracyCallback,
CriterionCallback, CriterionAggregatorCallback)
from catalyst.contrib.schedulers import OneCycleLRWithWarmup
from catalyst.contrib.optimizers import RAdam, Lookahead
from collections import OrderedDict
parser = argparse.ArgumentParser(description="Train model for speaker_diarization problem")
parser.add_argument("--data_folder", help="pre-training dataset", type=str,
default='/data_ssd/VoxCeleb2/vox2_dev_dataset/dev/aac')
parser.add_argument("--train_file", help="file with train split", type=str,
default='/data_ssd/VoxCeleb2/meta/voxlb2_train.txt')
parser.add_argument("--valid_file", help="file with valid split", type=str,
default='/data_ssd/VoxCeleb2/meta/voxlb2_val.txt')
parser.add_argument("--meta_info_file", help="meta information (gender e.g)", type=str,
default='/data_ssd/VoxCeleb2/vox2_meta.csv')
parser.add_argument("--log_dir", help="log_dir", type=str, default='/data_ssd/VoxCeleb2-one-logs/')
parser.add_argument("--resume", help="resume path", type=str, default=None)
# parameters
parser.add_argument("--num_epochs", help="number of epochs", type=int, default=120)
parser.add_argument("--batch_size", help="batch_size", type=int, default=80)
parser.add_argument("--fp16", help="use fp16", type=bool, default=False)
parser.add_argument("--num_workers", help="num_workers", type=int, default=4)
parser.add_argument("--feature_kind", help="feature_kind", type=int, default=0)
parser.add_argument("--num_classes", help="num_classes", type=int, default=5994)
parser.add_argument("--dim", help="dim", type=int, default=512)
parser.add_argument("--min_lr", help="lr", type=float, default=1e-4)
parser.add_argument("--max_lr", help="lr", type=float, default=1e-1)
parser.add_argument("--triplet_loss", help="triplet_loss", type=bool, default=False)
parser.add_argument("--one_hot_encoding", help="one_hot_encoding", type=bool, default=False)
parser.add_argument("--clamp", help="clamp", type=bool, default=False)
parser.add_argument("--scheduler", help="scheduler", type=str, default='MultiStepLR')
parser.add_argument("--optimizer", help="optimizer", type=str, default='Adam')
parser.add_argument("--warmup_steps", help="warmup_steps", type=int, default=15)
parser.add_argument('--attention', dest='attention', action='store_true')
parser.add_argument('--no-attention', dest='attention', action='store_false')
parser.set_defaults(attention=True)
args = parser.parse_args()
with open('spectrogram.yaml', 'r') as file:
settings = yaml.safe_load(file)
class_names = [str(i) for i in range(args.num_classes)]
model = SpeakerRecognition(args.dim, args.num_classes, use_attention=args.attention).to('cuda')
if args.clamp:
print('clamp weights')
for p in model.parameters():
p.register_hook(lambda grad: torch.clamp(grad, min=1e-8))
augmenters = {'train': get_training_augmentation(**settings),
'valid': get_valid_augmentation(**settings)}
fp16 = None
if args.fp16:
fp16 = dict(opt_level="O1")
loaders = create_dataloders(
args.train_file,
args.valid_file,
args.data_folder,
args.meta_info_file,
one_hot_encoding=args.one_hot_encoding,
bs=args.batch_size,
num_classes=args.num_classes,
num_workers=args.num_workers,
augmenters=augmenters,
)
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.max_lr, weight_decay=1e-4)
elif args.optimizer == 'RAdam':
base_optimizer = RAdam(model.parameters(), lr=args.max_lr, weight_decay=1e-4)
optimizer = Lookahead(base_optimizer)
elif args.optimizer == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), momentum=0.95, lr=args.max_lr, weight_decay=1e-4)
else:
print('You have choose the default Optimizer - Adam')
optimizer = torch.optim.Adam(model.parameters(), lr=args.max_lr, weight_decay=1e-4)
criterion = OrderedDict({
"ce": CustomCrossEntropyLoss(),
})
if args.triplet_loss:
criterion["htl"] = HardTripletLoss(squared=True)
if args.scheduler == 'OneCycleLRWithWarmup':
scheduler = OneCycleLRWithWarmup(
optimizer,
num_steps=args.num_epochs,
init_lr=args.max_lr,
lr_range=(args.max_lr, args.min_lr),
warmup_steps=args.warmup_steps,
momentum_range=(0.85, 0.95),
)
else:
step = len(range(0, args.num_epochs, 4))
milestones = [step * i for i in range(1, 4)]
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=milestones, gamma=0.1
)
runner = SupervisedRunner(
input_key='features',
output_key=['embeddings', 'logits']
)
callbacks = [
AccuracyCallback(
num_classes=args.num_classes,
accuracy_args=[1],
activation="Softmax",
),
CriterionCallback(
input_key="targets",
prefix="loss",
criterion_key="ce"
),
]
if args.triplet_loss:
callbacks.extend([
CriterionCallback(
input_key="targets",
output_key="embeddings",
prefix="loss",
criterion_key="htl"
),
CriterionAggregatorCallback(
prefix="loss",
loss_keys=["ce", "htl"],
loss_aggregate_fn="sum"
)]
)
_callbacks = OrderedDict()
callback_names = ['accuracy', 'criterion_ce', 'criterion_htl', 'criterion_aggregator']
for i, c in enumerate(callbacks):
_callbacks[callback_names[i]] = c
callbacks = _callbacks
runner.train(
model=model,
logdir=args.log_dir,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
loaders=loaders,
callbacks=callbacks,
num_epochs=args.num_epochs,
fp16=fp16,
resume=args.resume,
verbose=True
)