-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_analysis.py
378 lines (325 loc) · 17.8 KB
/
graph_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#
# Copyright 2024 Two Sigma Open Source, LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from graph_construction import NodeType, get_nodes_by_node_type, alone_context, get_downstream_columns, predecessors_filtered, alone_context_2, get_downstream_columns_and_their_unique_values
import tqdm
import pandas as pd
import ast
import networkx as nx
import matplotlib.pyplot as plt
from collections import defaultdict
def printTree(g, root, markerStr="+- ", levelMarkers=[]):
emptyStr = " "*len(markerStr)
connectionStr = "|" + emptyStr[:-1]
level = len(levelMarkers) # recursion level
mapper = lambda draw: connectionStr if draw else emptyStr
markers = "".join(map(mapper, levelMarkers[:-1]))
markers += markerStr if level > 0 else ""
print(f"{markers}{root}")
# After root has been printed, recurse down (depth-first) the child nodes.
predecessors = list(predecessors_filtered(g, root))
for i, child in enumerate(predecessors):
# The last child will not need connection markers on the current level
# (see example above)
isLast = i == len(predecessors) - 1
printTree(g, child, markerStr, [*levelMarkers, not isLast])
import numpy as np
def _analyze_column_to_dataset_cast_func_behavior(obj):
module = ast.parse(obj)
multi_body_func = False
single_line_func_behavior = None
for node in ast.walk(module):
if isinstance(node, ast.ClassDef):
for func_def in node.body:
if func_def.name == 'cast':
if len(func_def.body) == 1:
return_line = func_def.body[0]
if isinstance(return_line, ast.If) or isinstance(return_line, ast.Try):
single_line_func_behavior = 'if or try clause'
break
#print(ast.dump(return_line, indent=4))
if isinstance(return_line.value, ast.Name):
single_line_func_behavior = 'no-op func'
elif isinstance(return_line.value, ast.Call):
sub_func = return_line.value.func
if isinstance(sub_func, ast.Attribute):
single_line_func_behavior = f'attribute_call: {sub_func.attr}'
else:
single_line_func_behavior = f'func_call: {sub_func.id}'
else:
single_line_func_behavior = 'explicit_nan_checker'
else:
multi_body_func = True
return [multi_body_func, single_line_func_behavior]
def analyze_cast_func_behavior(g, n_type):
results = []
assert n_type in [NodeType.DATA_SET_SEMANTIC_TYPE, NodeType.DATA_PRODUCT_SEMANTIC_TYPE]
ds_types = get_nodes_by_node_type(g, n_type)
for ds_type in tqdm.tqdm(ds_types):
results.append([ds_type, *_analyze_column_to_dataset_cast_func_behavior(g.nodes[ds_type]['str_class_def'])])
cast_df = pd.DataFrame(results, columns=['ds_type', 'multibody_func', 'single_line_behavior'])
return cast_df
def col_to_dataset_analysis(g):
ds_types = get_nodes_by_node_type(g, NodeType.DATA_SET_SEMANTIC_TYPE)
results = []
for ds_type in tqdm.tqdm(ds_types):
c_name = ds_type.split(':')[-1]
obj = alone_context(g.nodes[ds_type]['str_class_def'], c_name)
#all_cols = get_downstream_columns(g, ds_type)
#all_vals = list(itertools.chain(*[g.nodes[col]['col_values'] for col in all_cols]))
all_vals = get_downstream_columns_and_their_unique_values(g, ds_type)
for val in all_vals:
add_to_results_ds_or_dp_type(results, obj, val, [ds_type])
results_df = pd.DataFrame(
results,
columns=['ds_type', 'input_val_is_null', 'passed', 'changed', 'original_val', 'new_val', 'exception_type', 'str_exception']
)
results_df['unique_id'] = [ix for ix in range(len(results_df))]
return results_df
def col_to_dp_analysis(g, col_to_dataset_results_df):
dps = get_nodes_by_node_type(g, NodeType.DATA_PRODUCT_SEMANTIC_TYPE)
results = []
for dp in tqdm.tqdm(dps):
dp_preds = list(g.predecessors(dp))
#sub_df = col_to_dataset_results_df.loc[col_to_dataset_results_df.ds_type.isin(dp_preds)]
sub_df = col_to_dataset_results_df.loc[col_to_dataset_results_df.ds_type.isin(dp_preds)].drop_duplicates('original_val')
c_name = dp.split(':')[-1]
obj = alone_context(g.nodes[dp]['str_class_def'], c_name)
for ix, row in sub_df.loc[sub_df.ds_type.isin(dp_preds)].iterrows():
add_to_results_ds_or_dp_type(results, obj, row.original_val, [dp, row.ds_type])
col_to_dp_results_df = pd.DataFrame(
results,
columns=['dp', 'ds_type', 'input_val_is_null', 'passed', 'changed', 'original_val', 'new_val', 'exception_type', 'str_exception']
)
col_to_dp_results_df.loc[:, 'unique_id'] = [ix for ix in range(len(col_to_dp_results_df))]
return col_to_dp_results_df
import warnings
def ds_or_gp_to_gen_analysis(g, col_to_dataset_results_df, col_to_dp_results_df):
gen_types = get_nodes_by_node_type(g, NodeType.GENERAL_ENRICHED_SEMANTIC_TYPE)
results = []
for gen_type in tqdm.tqdm(gen_types):
gen_type_preds = list(predecessors_filtered(g, gen_type))
all_preds_df = []
for pred in gen_type_preds:
sub_df = None
if g.nodes[pred]['node_type'].value == NodeType.DATA_PRODUCT_SEMANTIC_TYPE.value:
sub_df = col_to_dp_results_df.loc[(col_to_dp_results_df.dp == pred) & col_to_dp_results_df.passed]
else:
sub_df = col_to_dataset_results_df.loc[(col_to_dataset_results_df.ds_type == pred) & col_to_dataset_results_df.passed]
if len(sub_df) == 0:
print(gen_type, pred, 'no valid passes')
continue
with warnings.catch_warnings(record=True) as w:
sub_df.loc[:, 'dp'] = None
all_preds_df.append(sub_df)
if len(all_preds_df) == 0:
print(gen_type, 'no valid preds')
continue
#all_preds_df = pd.concat(all_preds_df, axis=0)
all_preds_df = pd.concat(all_preds_df, axis=0).drop_duplicates('new_val')
c_name = gen_type.split(':')[-1]
obj = alone_context(g.nodes[gen_type]['str_class_def'], c_name)
for ix, row in all_preds_df.iterrows():
add_to_results_gen_type(results, obj, row.new_val, [gen_type, row.dp, row.ds_type])
col_to_gen_type_df = pd.DataFrame(
results,
columns=['gen_type', 'dp', 'ds_type', 'input_val_is_null', 'passed', 'changed', 'validated', 'original_val', 'new_val', 'super_cast_exception_type', 'super_cast_str_exception', 'validate_exception_type', 'validate_str_exception']
)
col_to_gen_type_df.loc[:, 'unique_id'] = [ix for ix in range(len(col_to_gen_type_df))]
return col_to_gen_type_df
def cross_type_cast_analysis(g, col_to_gen_type_df):
gen_types = get_nodes_by_node_type(g, NodeType.GENERAL_ENRICHED_SEMANTIC_TYPE)
results = []
for gen_type in tqdm.tqdm(gen_types):
sub_df = col_to_gen_type_df.loc[(col_to_gen_type_df.gen_type == gen_type) & col_to_gen_type_df.validated]
for succ in g.successors(gen_type):
cast_func = g.edges[(gen_type, succ)]['cross_type_cast']
func_name = f"cross_type_cast_between_{gen_type.split(':')[-1]}_and_{succ.split(':')[-1]}"
func = alone_context_2(cast_func, func_name)
second_obj_c_name = succ.split(':')[-1]
second_obj = alone_context(g.nodes[succ]['str_class_def'], second_obj_c_name)
for ix, row in sub_df.iterrows():
original_val = row.new_val
add_to_results_cross_type_cast(results, func, second_obj, original_val, [gen_type, succ, row.dp, row.ds_type, row.input_val_is_null])
cross_type_casts_df = pd.DataFrame(
results,
columns=['src_gen_type', 'dst_gen_type', 'dp', 'ds_type', 'input_val_is_null', 'passed', 'changed', 'validated', 'original_val', 'new_val', 'cross_type_cast_exception_type', 'cross_type_cast_exception', 'validate_dst_exception_type', 'validate_dst_str_exception']
)
cross_type_casts_df.loc[:, 'unique_id'] = [ix for ix in range(len(cross_type_casts_df))]
return cross_type_casts_df
def add_to_results_ds_or_dp_type(results, obj, val, extra_info):
null_status = False
if isinstance(val, list) or isinstance(val, set) or isinstance(val, np.ndarray):
if pd.isna(val).all():
null_status = True
elif pd.isna(val):
null_status = True
input_val = val
try:
new = obj.cast(input_val)
changed = new != input_val
results.append([*extra_info, null_status, True, changed, input_val, new, None, None])
except Exception as e:
if str(e) in [
'cannot use a string pattern on a bytes-like object',
'strptime() argument 1 must be str, not float'
]:
add_to_results_ds_or_dp_type(results, obj, str(val), extra_info)
else:
results.append([*extra_info, null_status, False, False, input_val, None, str(type(e).__name__), str(e)])
from collections.abc import Iterable
def add_to_results_gen_type(results, obj, val, extra_info):
null_status = False
if isinstance(val, list) or isinstance(val, set) or isinstance(val, np.ndarray):
if pd.isna(val).all():
null_status = True
elif pd.isna(val):
null_status = True
input_val = val
try:
new = obj.super_cast(input_val)
changed = new != input_val
try:
validated = obj.validate(input_val)
if validated is None:
validated = True
results.append([*extra_info, null_status, True, changed, validated, input_val, new, None, None, None, None])
except Exception as e:
results.append([*extra_info, null_status, True, changed, False, input_val, new, None, None, str(type(e).__name__), str(e)])
except Exception as e:
string_e = str(e)
if (string_e in [
'cannot use a string pattern on a bytes-like object',
]) or ('strptime() argument 1 must be str' in string_e):
add_to_results_gen_type(results, obj, str(val), extra_info)
else:
results.append([*extra_info, null_status, False, False, False, val, None, str(type(e).__name__), str(e), None, None])
def add_to_results_cross_type_cast(results, func, second_obj, original_val, extra_info):
try:
new_val = func(original_val)
changed = new_val != original_val
if isinstance(changed, pd.Series) or isinstance(changed, np.ndarray):
changed = changed.all()
elif changed not in [True, False] != bool:
raise Exception(f'Handle: {new_val}, {original_val}, {changed}')
try:
validated = second_obj.validate(new_val)
if validated is None:
validated = True
results.append([*extra_info, True, changed, validated, original_val, new_val, None, None, None, None])
except Exception as e:
results.append([*extra_info, True, False, False, original_val, None, None, None, str(type(e).__name__), str(e)])
except Exception as e:
if str(e).startswith('Handle:'):
raise e
results.append([*extra_info, False, False, False, original_val, None, str(type(e).__name__), str(e), None, None])
def get_gen_type_usage_df(g, gen_types = None):
gen_types_downstream_map = {}
if gen_types is None:
gen_types = get_nodes_by_node_type(g, NodeType.GENERAL_ENRICHED_SEMANTIC_TYPE)
else:
for n in gen_types:
assert g.nodes[n]['node_type'].value == NodeType.GENERAL_ENRICHED_SEMANTIC_TYPE.value
for n in gen_types:
down_cols = get_downstream_columns(g, n)
num_cols = len(set(down_cols))
across_dps = defaultdict(int)
across_tables = defaultdict(int)
for col in down_cols:
splitted = col.split(':')
_, dp, file_name, _ = splitted
across_dps[dp] +=1
across_tables[f'{dp}/{file_name}'] += 1
gen_types_downstream_map[n] = {'down_cols': down_cols, 'across_dps': across_dps, 'across_tables': across_tables}
gen_type_rank_df = pd.DataFrame(gen_types_downstream_map).T
gen_type_rank_df.index = [thing.split(':')[-1] for thing in gen_type_rank_df.index]
gen_type_rank_df['num_down_cols'] = gen_type_rank_df.down_cols.map(len)
gen_type_rank_df['num_across_dps'] = gen_type_rank_df.across_dps.map(len)
gen_type_rank_df['num_across_tables'] = gen_type_rank_df.across_tables.map(len)
return gen_type_rank_df
def show_gen_type_usage(g, gen_type_rank_df = None):
if gen_type_rank_df is None:
gen_type_rank_df = get_gen_type_usage_df(g)
sorted_down_cols = gen_type_rank_df.sort_values('num_across_dps', ascending=False)
fig, ax = plt.subplots(figsize=(30, 10))
sorted_down_cols[['num_down_cols', 'num_across_dps', 'num_across_tables']].iloc[:100].plot.bar(ax=ax, fontsize=20)
import os
import json
from graph_construction import get_raw_table_and_columns
def get_dp_human_eval_results(g, src_dir, reader):
dt_nodes = get_nodes_by_node_type(g, NodeType.DATA_SET_SEMANTIC_TYPE)
agg_results = []
for dp in os.listdir(src_dir):
if dp == 'interesting_results.txt':
interesting_results = True
continue
new_dir = os.path.join(src_dir, dp)
for f_name in os.listdir(new_dir):
if f_name.endswith('_results.json'):
table_name = f_name.replace('_results.json', '')
results = get_raw_table_and_columns(g, src_dir, dp, table_name, reader)
all_cols = results[:, 0]
with open(f'{new_dir}/{f_name}') as f:
results_json = json.load(f)
filtered_json = {k:v for k,v in results_json.items() if 'unnamed' not in k}
all_cols = set([col for col in all_cols if 'unnamed' not in col])
assert set(filtered_json.keys()) == all_cols, (f'{new_dir}/{f_name}', set(filtered_json.keys()), all_cols)
positive_set = set([k for k,v in filtered_json.items() if v[0]])
type_preds = set(results[np.char.str_len(results[:, 1]) > 0, 0])
for col, col_type_str, ds_type_str, in results:
if col not in all_cols:
continue
human_prediction = 'IS FST' if (col in positive_set) else 'NOT FST'
gpt_prediction = 'IS FST' if (col in type_preds) else 'NOT FST'
agg_results.append(
[
f"{dp}/{table_name}",
col,
col_type_str,
ds_type_str,
human_prediction,
gpt_prediction,
filtered_json[col][1],
]
)
df = pd.DataFrame(agg_results, columns=['id', 'col_name', 'col_node', 'ds_node', 'human_prediction', 'gpt_prediction', 'scope'])
df['unique_id'] = range(len(df))
return df
def get_cross_human_eval_results(g, src_dir, results_obj_suffix = '_results.json'):
agg_results = []
for gen_type_json in os.listdir(src_dir):
if gen_type_json == 'matches_per_gen.pickle':
continue
if not gen_type_json.endswith(results_obj_suffix):
continue
src_name = gen_type_json.replace(results_obj_suffix, '')
src_type = f"TYPE:_:_:{src_name}"
assert src_type in g.nodes()
gen_type_results = json.load(open(os.path.join(src_dir, gen_type_json), 'r'))
o_df = pd.DataFrame.from_dict(gen_type_results, orient='index', columns=['relation', 'same_entity', 'relation_type', 'reasoning', 'logic', 'interesting'])
all_neighbors = set(o_df.index)
for edge_type in ['direct', 'indirect']:
true_neighbors = set(o_df.loc[o_df.relation_type.isin(['Bidirectional', 'Uni Src->Dst'])].index)
if edge_type == 'direct':
pred_neighbors = set([succ for succ in g.successors(src_type) if 'cross_type_cast' in g.edges[(src_type, succ)]])
else:
pred_neighbors = set(nx.dfs_tree(g, src_type, depth_limit=2).nodes()).intersection(all_neighbors) - {src_type}
for neighbor in all_neighbors:
human_prediction = 'CASTABLE' if (neighbor in true_neighbors) else 'UNCASTABLE'
gpt_prediction = 'CASTABLE' if (neighbor in pred_neighbors) else 'UNCASTABLE'
agg_results.append([src_name, neighbor, edge_type, human_prediction, gpt_prediction, o_df.loc[neighbor, 'relation_type'], o_df.loc[neighbor, 'same_entity'], o_df.loc[neighbor, 'reasoning'], o_df.loc[neighbor, 'logic']])
cross_df = pd.DataFrame(agg_results, columns=['src', 'dst', 'edge_type', 'human_prediction', 'gpt_prediction', 'relation_type', 'identical', 'reasoning', 'logic'])
cross_df['unique_id'] = range(len(cross_df))
return cross_df