generated from libigl/libigl-example-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MpmHook.cpp
579 lines (493 loc) · 19.1 KB
/
MpmHook.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
#include "MpmHook.h"
#include "Util.h"
#include <igl/opengl/glfw/imgui/ImGuiHelpers.h>
#include <igl/unproject_onto_mesh.h>
#include <igl/polar_dec.h>
#include <igl/readPLY.h>
#include <string>
#include <omp.h>
#include <cmath>
using namespace Eigen;
MpmHook::MpmHook() : PhysicsHook()
{
clickedVertex = -1;
button_ = -1;
meshFile_ = "bunny.off";
mesh_points_ = 10000;
mesh_scale_ = 1.5;
mesh_offset_ = 0.3;
enable_mesh_ = false;
is_3d_ = false;
enable_heat_ = false;
enable_air_ = false;
use_global_lame_ = false;
resolution_ = 32;
dimensions_ = 3;
point_size_ = 11;
timestep_ = 0.1;
gravity_ = -0.4;
lambda_ = 10.0;
mu_ = 20.0;
render_color = 1;
enable_snow_ = false;
theta_compression_ = 2.5e-2; // values from snow paper
theta_stretch_ = 7.5e-3;
box_dx_ = 0.5;
point_color_= ImVec4(0.45f, 0.55f, 0.60f, 1.00f);
enable_addbox_ = false;
enable_heatgun_ = false;
render_particle_heat_ = false;
render_grid_heat_ = true;
alpha_ = 55.0;
melting_point_ = 0.8;
transition_heat_ = 5;
initial_temperature_ = 0.;
}
void MpmHook::addParticleBox(Vector3d pos, Vector3i lengths, double dx) {
int r0 = particles_.x.rows();
lengths = (lengths.cast<double>().array() / dx).cast<int>();
if (!is_3d_) {
lengths(2) = 1;
}
// Create new material for box.
int id = materials_.size();
Material mat;
mat.alpha = alpha_;
mat.melting_point = melting_point_;
mat.transition_heat = transition_heat_;
materials_.emplace_back(mat);
int new_rows = r0 + lengths.prod();
particles_.resize(new_rows);
for (int i = 0; i < lengths(0); ++i) {
for (int j = 0; j < lengths(1); ++j) {
for (int k = 0; k < lengths(2); ++k) {
double x = pos(0) + double(i) * dx;
double y = pos(1) + double(j) * dx;
double z = pos(2) + double(k) * dx;
if (!is_3d_) {
z = resolution_/2.0;
}
int idx;
if (!is_3d_) {
idx = r0 + i*lengths(0) + j;
} else {
idx = r0 + i*lengths(0)*lengths(1) + j*lengths(1) + k;
}
particles_.material_id(idx) = id;
particles_.x.row(idx) << x,y,z;
particles_.v.row(idx) = Vector3d::Zero();
particles_.C[idx].setZero();
particles_.F[idx].setIdentity();
particles_.Jp(idx) = 1.0;
particles_.mass(idx) = 1.0;
particles_.mu(idx) = mu_;
particles_.T(idx) = initial_temperature_;
particles_.melting_energy(idx) = 0;
particles_.color.row(idx) << point_color_.x + double(i)/lengths(0)/5,
point_color_.y + double(j)/lengths(1)/5,
point_color_.z + double(k)/lengths(2)/5;
}
}
}
}
void MpmHook::addParticleMesh() {
// Reading in mesh.
MatrixXd V;
MatrixXi F;
Util::readMesh(meshFile_, V, F);
// Scaling mesh to fill bounding box.
Eigen::Vector3d min = V.colwise().minCoeff();
V = V.rowwise() - min.transpose();
V = V / (V.maxCoeff() + 2./resolution_) / mesh_scale_;
V = V.array() + mesh_offset_;
// Generating point cloud from mesh.
MatrixXd P = Util::meshToPoints(V, F, mesh_points_) * resolution_;
// Create new material for box.
int id = materials_.size();
Material mat;
mat.alpha = alpha_;
mat.melting_point = melting_point_;
mat.transition_heat = transition_heat_;
materials_.emplace_back(mat);
int r0 = particles_.x.rows();
int new_rows = r0 + P.rows();
particles_.resize(new_rows);
for (int i = 0; i < P.rows(); ++i) {
Vector3d p = P.row(i);
if (!is_3d_) {
p(2) = resolution_/2.0;
}
int idx = r0 + i;
particles_.material_id(idx) = id;
particles_.x.row(idx) = p;
particles_.v.row(idx) = Vector3d::Zero();
particles_.C[idx].setZero();
particles_.F[idx].setIdentity();
particles_.Jp(idx) = 1.0;
particles_.mass(idx) = 1.0;
particles_.mu(idx) = mu_;
particles_.T(idx) = initial_temperature_;
particles_.melting_energy(idx) = 0;
particles_.color.row(idx) << point_color_.x + double(i)/P.rows()/5,
point_color_.y + double(i)/P.rows()/15,
point_color_.z + double(i)/P.rows()/5;
}
}
void MpmHook::initGrid(int size) {
grid_.v.resize(size, dimensions_);
grid_.mass.resize(size, 1);
grid_.alpha.resize(size, 1);
T_ = MatrixXd::Zero(size, 1); // Temperature
f_ = MatrixXd::Zero(size, 1); // Source
}
void MpmHook::drawGUI(igl::opengl::glfw::imgui::ImGuiMenu &menu)
{
if (ImGui::CollapsingHeader("Mesh", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::Checkbox("Enable Mesh", &enable_mesh_);
ImGui::InputInt("Mesh Points", &mesh_points_);
ImGui::InputText("Filename", meshFile_);
ImGui::InputDouble("Mesh Scale", &mesh_scale_);
ImGui::InputDouble("Mesh Offset", &mesh_offset_);
}
if (ImGui::CollapsingHeader("Simulation Options", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::Checkbox("Enable 3D", &is_3d_);
ImGui::Checkbox("Enable Snow", &enable_snow_);
ImGui::Checkbox("Enable placement", &enable_addbox_);
ImGui::Checkbox("Use Global Lame params", &use_global_lame_);
ImGui::InputInt("Grid Resolution", &resolution_);
ImGui::InputDouble("Timestep", ×tep_);
ImGui::InputDouble("Gravity", &gravity_);
ImGui::InputDouble("Lambda", &lambda_);
ImGui::InputDouble("Mu", &mu_);
ImGui::InputDouble("Critical Compression", &theta_compression_);
ImGui::InputDouble("Critical Stretch", &theta_stretch_);
}
if (ImGui::CollapsingHeader("Heat Options", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::Checkbox("Enable Heat", &enable_heat_);
ImGui::Checkbox("Enable heat gun (right click)", &enable_heatgun_);
ImGui::Checkbox("Enable Dirichlet Air", &enable_air_);
ImGui::InputDouble("Thermal Diffusivity", &alpha_);
ImGui::InputDouble("Melting Point", &melting_point_);
ImGui::InputDouble("Initial Temperature", &initial_temperature_);
ImGui::InputInt("Transition Heat", &transition_heat_);
}
const char* listbox_items[] = { "Inferno", "Jet", "Magma", "Parula", "Plasma", "Viridis"};
if (ImGui::CollapsingHeader("Render Options", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::ListBox("Render color", &render_color, listbox_items, IM_ARRAYSIZE(listbox_items), 4);
ImGui::Checkbox("Render particle temperature", &render_particle_heat_);
ImGui::Checkbox("Render grid temperature", &render_grid_heat_);
ImGui::InputInt("Particle size", &point_size_);
}
if (ImGui::CollapsingHeader("Box Options", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::ColorEdit3("Point color", (float*)&point_color_);
ImGui::InputDouble("Spacing", &box_dx_);
}
}
bool MpmHook::mouseClicked(igl::opengl::glfw::Viewer &viewer, int button) {
render_mutex.lock();
MouseEvent me;
me.button = button;
int fid;
Eigen::Vector3f bc;
// Cast a ray in the view direction starting from the mouse position
double x = viewer.current_mouse_x;
double y = viewer.core().viewport(3) - viewer.current_mouse_y;
if(igl::unproject_onto_mesh(Eigen::Vector2f(x,y), viewer.core().view,
viewer.core().proj, viewer.core().viewport, grid_V, grid_F, fid, bc)) {
me.type = MouseEvent::ME_CLICKED;
me.vertex = grid_F(fid,0);
me.pos = grid_V.row(me.vertex) * resolution_;
} else {
me.type = MouseEvent::ME_RELEASED;
}
render_mutex.unlock();
mouseMutex.lock();
mouseEvents.push_back(me);
mouseMutex.unlock();
return false;
}
bool MpmHook::mouseReleased(igl::opengl::glfw::Viewer &viewer, int button) {
MouseEvent me;
me.type = MouseEvent::ME_RELEASED;
mouseMutex.lock();
mouseEvents.push_back(me);
mouseMutex.unlock();
return false;
}
void MpmHook::tick()
{
mouseMutex.lock();
for (MouseEvent me : mouseEvents) {
if (me.type == MouseEvent::ME_CLICKED) {
curPos = me.pos;
clickedVertex = me.vertex;
button_ = me.button;
}
if (me.type == MouseEvent::ME_RELEASED) {
clickedVertex = -1;
}
}
mouseEvents.clear();
mouseMutex.unlock();
}
void MpmHook::buildLaplacian() {
//TODO currently assuming 2D when indexing
L_ = SparseMatrix<double>(T_.rows(), T_.rows());
L_.setZero();
std::vector<Triplet<double>> triplets;
double dt = 1e-0 ;//* alpha_;
for (int i = 0; i < T_.rows(); ++i) {
int x = i / resolution_; // (resolution_*resolutoin_ for 3D)
int y = i % resolution_;
double r = dt * std::clamp(grid_.alpha(i), 1.0, 1000.0);
if (!enable_air_) r = dt;
//std::cout << "r: " << r << std::endl;
if (!enable_air_ || (grid_.mass(i) > 1e-7)) {
triplets.emplace_back(Triplet<double>(i, i, 1 + 4*r));
if ((x+1) < resolution_)
triplets.emplace_back(Triplet<double>(i, (x+1)*resolution_ + y, -r));
if ((x-1) >= 0)
triplets.emplace_back(Triplet<double>(i, (x-1)*resolution_ + y, -r));
if ((y+1) < resolution_)
triplets.emplace_back(Triplet<double>(i, x*resolution_ + (y+1), -r));
if ((y-1) >= 0)
triplets.emplace_back(Triplet<double>(i, x*resolution_ + (y-1), -r));
} else { triplets.emplace_back(Triplet<double>(i, i, dt)); }
}
L_.setFromTriplets(triplets.begin(), triplets.end());
}
void MpmHook::initSimulation()
{
Eigen::initParallel();
particles_.clear();
materials_.clear();
grid_size_ = resolution_*resolution_;
if (is_3d_) {
grid_size_ *= resolution_;
}
if (enable_mesh_) {
addParticleMesh();
} else {
addParticleBox(Vector3d(resolution_/2.,resolution_/2.,16.), Vector3i(8,8,8), box_dx_);
}
initGrid(grid_size_); // create domain
buildLaplacian();
// Visualization grid.
grid_V.resize(0,0);
grid_F.resize(0,0);
igl::triangulated_grid(resolution_,resolution_,grid_V,grid_F);
}
bool MpmHook::simulationStep() {
int nparticles = particles_.x.rows();
bool failure = false; // Used to exit simulation loop when we hit a NaN.
grid_.v.setZero();
grid_.mass.setZero();
grid_.alpha.setZero();
f_.setZero();
if (enable_air_)
T_.setZero(); //TODO aaa
if (clickedVertex != -1) {
if (enable_addbox_ && (button_ == 0)) {
curPos(2) = resolution_/2.;
addParticleBox(curPos, Vector3i(8,8,8), box_dx_);
clickedVertex = -1;
} else if (enable_heatgun_ && (button_ == 2)) {
//TODO Only works in 2D
Vector3i idx = curPos.cast<int>();
int grid_i = idx(0) * resolution_ + idx(1);
f_(grid_i) = 100.0;
}
}
// Particles -> Grid
#pragma omp parallel for
for (int i = 0; i < nparticles; ++i) {
if (failure) continue;
const Vector3d& pos = particles_.x.row(i);
const Vector3d& vel = particles_.v.row(i);
const Matrix3d& F = particles_.F[i];
const double Jp = particles_.Jp(i);
const double mass = particles_.mass(i);
double lambda = lambda_;
double mu = particles_.mu(i);
if (use_global_lame_) mu = mu_;
int id = particles_.material_id(i);
const double alpha = materials_[id].alpha;
// Interpolation
Vector3i cell_idx = pos.cast<int>();
Vector3d diff = (pos - cell_idx.cast<double>()).array() - 0.5;
Matrix3d weights;
weights.row(0) = 0.5 * (0.5 - diff.array()).pow(2);
weights.row(1) = 0.75 - diff.array().pow(2);
weights.row(2) = 0.5 * (0.5 + diff.array()).pow(2);
// Neohoookean MPM course eq 48
Matrix3d F_T_inv = F.transpose().inverse();
Matrix3d P = mu*(F - F_T_inv) + lambda*std::log(Jp)*F_T_inv;
Matrix3d stress = (1.0 / Jp) * P * F.transpose();
stress = -Jp * 4 * stress * timestep_; // eq 16 MLS-MPM
if (isnan(stress(0,0))) {
failure = true;
std::cout << "FAILURE: " << cell_idx << std::endl;
continue;
}
int z_max = is_3d_ ? 3 : 1;
// for all surrounding 9 cells
for (int x = 0; x < 3; ++x) {
for (int y = 0; y < 3; ++y) {
for (int z = 0; z < z_max; ++z) {
double weight = weights(x, 0) * weights(y, 1);
Vector3i idx = Vector3i(cell_idx(0) + x - 1, cell_idx(1) + y - 1, cell_idx(2) + z - 1);
Vector3d dist = (idx.cast<double>() - pos).array() + 0.5;
if (!is_3d_) {
idx(2) = resolution_/2.;
dist(2) = 0;
} else {
weight *= weights(z, 2);
}
Vector3d Q = particles_.C[i] * dist;
// MPM course, equation 172
double weighted_mass = weight * mass;
// converting 2D index to 1D
int grid_i = get_index(idx);
Vector3d vel_momentum = weighted_mass * (vel + Q);
Vector3d neohookean_momentum = (weight*stress) * dist;
vel_momentum += neohookean_momentum;
// scatter mass and momentum contributions to the grid
#pragma omp critical
{
grid_.mass(grid_i) += weighted_mass;
grid_.v.row(grid_i) += vel_momentum;
grid_.alpha(grid_i) += weighted_mass * alpha;
// TODO aaa
if (enable_air_)
f_(grid_i) += weighted_mass * particles_.T(i);
}
}
}
}
}
if (failure) return true;
// Velocity Updates.
#pragma omp parallel for
for (int i = 0; i < grid_size_; ++i) {
if (grid_.mass(i) > 1e-7) {
// Converting momentum to velocity and applying gravity force.
grid_.v.row(i) /= grid_.mass(i);
grid_.v.row(i) += timestep_ * Vector3d(0, gravity_, 0);
// Enforcing boundaries.
Vector3i xyz = get_xyz(i);
int dims = is_3d_ ? 3 : 2;
for (int j = 0; j < dims; ++j) {
if (xyz(j) < 2 || xyz(j) > resolution_ - 3) {
grid_.v(i, j) = 0;
}
}
} else {
// cells that do no receive mass are considered air cells
// so the temperature is zeroed out.
// TODO aaa
if (enable_air_)
f_(i) = 0.0;
}
}
// -------------------------------------------------------- //
if (!enable_air_) {
f_ = T_; // Set new source!
f_(0.5*resolution_*(resolution_ + 1)) = 10.0;
}
if (enable_heat_) {
// Solve temperature field update.
buildLaplacian();
//ConjugateGradient<SparseMatrix<double>, Lower|Upper> solver;
SparseLU<SparseMatrix<double>> solver;
SparseMatrix<double> I(T_.rows(), T_.rows());
I.setIdentity();
solver.compute(L_);
T_ = solver.solve(f_);
//std::cout << "solver e: " << solver.error() << " iter: " << solver.iterations() << std::endl;
}
if (enable_air_) {
#pragma omp parallel for
for (int i = 0; i < grid_size_; ++i) {
if (grid_.mass(i) < 1e-7) {
T_(i) = 0.;
}
}
}
// ------------------------------------------------------- //
particles_.v.setZero();
particles_.T.setZero();
// Grid -> Particles
#pragma omp parallel for
for (int i = 0; i < nparticles; ++i) {
particles_.C[i].setZero();
Vector3d pos = particles_.x.row(i);
// Interpolation
Vector3i cell_idx = pos.cast<int>();
Vector3d diff = (pos - cell_idx.cast<double>()).array() - 0.5;
Matrix<double, 3, 3> weights;
weights.row(0) = 0.5 * (0.5 - diff.array()).pow(2);
weights.row(1) = 0.75 - diff.array().pow(2);
weights.row(2) = 0.5 * (0.5 + diff.array()).pow(2);
int z_max = is_3d_ ? 3 : 1;
// for all surrounding 9 cells
for (int x = 0; x < 3; ++x) {
for (int y = 0; y < 3; ++y) {
for (int z = 0; z < z_max; ++z) {
double weight = weights(x, 0) * weights(y, 1);
Vector3i idx = Vector3i(cell_idx(0) + x - 1, cell_idx(1) + y - 1, cell_idx(2) + z - 1);
Vector3d dist = (idx.cast<double>() - pos).array() + 0.5;
if (!is_3d_) {
idx(2) = resolution_/2.;
dist(2) = 0;
} else {
weight *= weights(z, 2);
}
// converting 2D index to 1D
int grid_i = get_index(idx);
Vector3d weighted_vel = grid_.v.row(grid_i) * weight;
// APIC paper equation 10, constructing inner term for B
particles_.C[i] += 4 * weighted_vel * dist.transpose();
particles_.v.row(i) += weighted_vel;
particles_.T(i) += weight * T_(grid_i);
}
}
}
// Melt
int id = particles_.material_id(i);
int transition_heat = materials_[id].transition_heat;
if (particles_.T(i) > materials_[id].melting_point) {
particles_.melting_energy(i) += 1;
if (particles_.melting_energy(i) > transition_heat)
particles_.mu(i) = 0.;
}
// advect particles
pos += particles_.v.row(i) * timestep_;
// clamp to ensure particles don't exit simulation domain
for (int j = 0; j < dimensions_; ++j) {
double x = double(pos(j));
pos(j) = std::clamp(x, 1.0, double(resolution_ - 2));
}
particles_.x.row(i) = pos;
particles_.F[i] = (Matrix3d::Identity() + timestep_ * particles_.C[i]) * particles_.F[i];
// Snow plasticity
double J = std::abs(particles_.F[i].determinant());
if (enable_snow_) {
JacobiSVD<Matrix3Xd> svd(particles_.F[i], ComputeFullU | ComputeFullV);
Vector3d S = svd.singularValues();
for (int j = 0; j < 3; ++j) {
S(j) = std::clamp(S(j), 1.0-theta_compression_, 1.0+theta_stretch_);
}
double Jp = particles_.Jp(i);
particles_.F[i] = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
double J_new = std::abs(particles_.F[i].determinant());
J = Jp * J/J_new;
}
particles_.Jp(i) = std::clamp(J, 0.1, 10.0);
}
return false;
}