diff --git a/Makefile b/Makefile index 6e842f42..06c6eb34 100644 --- a/Makefile +++ b/Makefile @@ -12,4 +12,4 @@ test_%: fi; clean: - rm -f tests_log.txt + rm -f tests_log.txt *.pdf diff --git a/tests/test_transformer/test_dropout/test_dropout_transormer.py b/tests/test_transformer/test_dropout/test_dropout_transormer.py index 3dab3435..98593527 100644 --- a/tests/test_transformer/test_dropout/test_dropout_transormer.py +++ b/tests/test_transformer/test_dropout/test_dropout_transormer.py @@ -1,9 +1,10 @@ import tensorflow as tf from utensor_cgen.frontend.tensorflow import GraphDefParser -from utensor_cgen.transformer.ns_transformer import DropoutTransformer +from utensor_cgen.transformer.ns_transformer import (DropoutTransformer, + DropoutTransformerV2) -def test_dropout_trans_1(droput_graph_tuple): +def test_dropout_trans_1_1(droput_graph_tuple): (graph_def, (keep_prob_name, dropout_output_name), output_nodes) = droput_graph_tuple @@ -35,19 +36,48 @@ def test_dropout_trans_1(droput_graph_tuple): # expecting the same outputs with keep_prob == 1.0 assert (output_1 == output_2).all() +def test_dropout_trans_1_2(droput_graph_tuple): + (graph_def, + (keep_prob_name, dropout_output_name), + output_nodes) = droput_graph_tuple + ugraph = GraphDefParser.parse(graph_def, output_nodes=output_nodes) + transformer = DropoutTransformerV2() + new_ugraph = transformer.transform(ugraph) + for op in new_ugraph.ops_info.values(): + assert op.ugraph + out_op = new_ugraph.ops_info[output_nodes[0]] + assert set([str(op.name) for op in out_op.input_nodes]) == set(['x', 'bias']) + # all dropout nodes should be gone + graph_1 = tf.Graph() + graph_2 = tf.Graph() + with graph_1.as_default(): + tf.import_graph_def(ugraph.graph_def, name='') + with graph_2.as_default(): + tf.import_graph_def(new_ugraph.graph_def, name='') + with tf.Session(graph=graph_1): + keep_prob = graph_1.get_tensor_by_name(keep_prob_name) + dropout_output = graph_1.get_tensor_by_name(dropout_output_name) + output = graph_1.get_tensor_by_name(output_nodes[0]+":0") + # test the dropout ops are gone + assert keep_prob.op.name not in new_ugraph.ops_info + assert dropout_output.op.name not in new_ugraph.ops_info + output_1 = output.eval({keep_prob:1.0}) + with tf.Session(graph=graph_2): + output = graph_2.get_tensor_by_name(output_nodes[0]+":0") + output_2 = output.eval() + # expecting the same outputs with keep_prob == 1.0 + assert (output_1 == output_2).all() + def test_dropout_trans_2(dropout_graph_tuple2): graph_def, output_nodes = dropout_graph_tuple2 ugraph = GraphDefParser.parse(graph_def, output_nodes=output_nodes) - trans = DropoutTransformer() + trans = DropoutTransformerV2() new_ugraph = trans.transform(ugraph) assert len(new_ugraph.ops_info) == 1 assert 'x' in new_ugraph.ops_info - def test_dropout_vgg(vgg_ugraph): - trans = DropoutTransformer() - from utensor_cgen.ir.misc.graph_viz import viz_graph - viz_graph(trans.pattern_ugraph, 'dropout_pattern') + trans = DropoutTransformerV2() new_ugraph = trans.transform(vgg_ugraph) for op_name in new_ugraph.ops_info: assert not op_name.startswith('dropout') diff --git a/tests/test_transformer/test_pipeline/test_pipeline_transformer.py b/tests/test_transformer/test_pipeline/test_pipeline_transformer.py index cba6e033..1e1213f7 100644 --- a/tests/test_transformer/test_pipeline/test_pipeline_transformer.py +++ b/tests/test_transformer/test_pipeline/test_pipeline_transformer.py @@ -6,16 +6,16 @@ def test_pipeline_1(methods): pipeline = TransformerPipeline(methods) assert len(pipeline.pipeline) == len(methods) for transformer, (method_name, _) in zip(pipeline.pipeline, methods): - assert isinstance(transformer, pipeline._TRANSFORMER_MAP[method_name]) + assert isinstance(transformer, pipeline.TRANSFORMER_MAP[method_name]) def test_pipeline_2(methods): pipeline = TransformerPipeline(methods) assert len(pipeline.pipeline) == len(methods) for transformer, (method_name, _) in zip(pipeline.pipeline, methods): - assert isinstance(transformer, pipeline._TRANSFORMER_MAP[method_name]) + assert isinstance(transformer, pipeline.TRANSFORMER_MAP[method_name]) def test_pipeline_3(methods): pipeline = TransformerPipeline(methods) assert len(pipeline.pipeline) == len(methods) for transformer, (method_name, _) in zip(pipeline.pipeline, methods): - assert isinstance(transformer, pipeline._TRANSFORMER_MAP[method_name]) + assert isinstance(transformer, pipeline.TRANSFORMER_MAP[method_name]) diff --git a/utensor_cgen/cli.py b/utensor_cgen/cli.py index 15e44add..429a312e 100644 --- a/utensor_cgen/cli.py +++ b/utensor_cgen/cli.py @@ -21,7 +21,6 @@ def _get_pb_model_name(path): def cli(): pass - @cli.command(name='convert', help='convert graph to cpp/hpp files') @click.help_option('-h', '--help') @click.argument('pb_file', required=True, metavar='MODEL.pb') @@ -84,6 +83,22 @@ def convert_graph(pb_file, output, data_dir, embed_data_dir, save_graph, save_graph, debug_comment) generator.generate(model_path) +@cli.command(name='list-trans-methods', help='list all available graph transformation') +@click.help_option('-h', '--help') +@click.option('--verbose', is_flag=True) +def list_trans_methods(verbose): + from utensor_cgen.transformer import TransformerPipeline + + if verbose: + for name, trans_cls in TransformerPipeline.TRANSFORMER_MAP.items(): + click.secho(name, fg='white', bold=True) + click.secho(trans_cls.__doc__, fg='yellow', bold=True) + else: + click.secho( + str(TransformerPipeline.all_transform_methods()), + fg='white', bold=True + ) + return 0 @cli.command(name='show', help='show node names in the pb file') @click.help_option('-h', '--help') diff --git a/utensor_cgen/transformer/ns_transformer.py b/utensor_cgen/transformer/ns_transformer.py index 94469f8e..bacfe863 100644 --- a/utensor_cgen/transformer/ns_transformer.py +++ b/utensor_cgen/transformer/ns_transformer.py @@ -4,14 +4,18 @@ Transformers that get rid of namescope/nodes which are not needed for inference """ +import re +from collections import defaultdict from copy import deepcopy import numpy as np import tensorflow as tf from utensor_cgen.frontend.tensorflow import GraphDefParser +from utensor_cgen.ir import OperationInfo, uTensorGraph from utensor_cgen.matcher import uTensorGraphMatcher -from utensor_cgen.utils import prune_graph, topologic_order_graph +from utensor_cgen.utils import (parse_tensor_name, prune_graph, + topologic_order_graph) from .base import Transformer @@ -47,11 +51,114 @@ def transform(self, ugraph): return ugraph + class DropoutTransformer(Transformer): - """Remove Dropout Op + """Dropout removal transformer + + Pros + ==== + - Insensitive to the dropout layer pattern so it works across different + versions of tensorflow + + Cons + ==== + - naming constrains on the dropout layers, layer name must starts with 'dropout' + and the keep_prob op must be with name starts with 'keep_prop' """ METHOD_NAME = 'dropout' KWARGS_NAMESCOPE = '_utensor_dropout' + TARGET_NODENAME_PATTERN = re.compile(r'(dropout[_\w\d]*)/.*') + + def transform(self, ugraph): + new_graph = uTensorGraph(output_nodes=ugraph.output_nodes) + dropout_input_map = self._find_input(ugraph) + new_ops_info = {} + for node_name in ugraph.ops_info: + match = self.TARGET_NODENAME_PATTERN.match(node_name) + if match: + # ignore all dropout nodes + continue + # replace inputs with dropout inputs + op_info = ugraph.ops_info[node_name] + in_t_infos = [deepcopy(t_info, {'ugraph': new_graph}) + for t_info in op_info.input_tensors] + out_t_infos = [deepcopy(t_info, {'ugraph': new_graph}) + for t_info in op_info.output_tensors] + op_attr = deepcopy(op_info.op_attr) + for i, t_info in enumerate(in_t_infos): + op_name = parse_tensor_name(t_info.name)[0] + match = self.TARGET_NODENAME_PATTERN.match(op_name) + if match: + name_scope = match.group(1) + # assume there should be only on input except keep_prob + dropout_in_tensor = dropout_input_map[name_scope] + in_t_infos.pop(i) + in_t_infos.insert(i, dropout_in_tensor) + new_op_info = OperationInfo(name=op_info.name, + input_tensors=in_t_infos, + n_inputs=len(in_t_infos), + output_tensors=out_t_infos, + n_outputs=len(out_t_infos), + op_type=op_info.op_type, + backend=op_info.backend, + op_attr=op_attr, + ugraph=new_graph) + new_ops_info[node_name] = new_op_info + new_graph.ops_info = new_ops_info + new_graph._backend = ugraph._backend + return new_graph + + def _find_dropout_clusters(self, ugraph): + clusters = defaultdict(lambda: []) + for node_name in ugraph.topo_order: + match = self.TARGET_NODENAME_PATTERN.match(node_name) + if match: + name_scope = match.group(1) + clusters[name_scope].append(node_name) + return dict(clusters) + + def _find_input(self, ugraph): + """dropout_name --> input_tensor_info + + input_tensor_info := the tensor info of a tensor which is not generated + in the dropout namescope but is consumed by ops in + dropout namescope with name not starts with 'keep_prob' + """ + clusters = self._find_dropout_clusters(ugraph) + input_map = {} + for node_name in ugraph.topo_order: + match = self.TARGET_NODENAME_PATTERN.match(node_name) + if match: + name_scope = match.group(1) + cluster = clusters[name_scope] + op_info = ugraph.ops_info[node_name] + for in_tensor_info in op_info.input_tensors: + in_op_name = parse_tensor_name(in_tensor_info.name)[0] + if in_op_name not in cluster and not in_op_name.startswith('keep_prob'): + input_map[name_scope] = in_tensor_info + # assuming there is only one input for dropout + break + return input_map + + +class DropoutTransformerV2(Transformer): + """Dropout removal transformer version 2 + + Implemented with subgraph matcher + + Pros + ==== + - no naming requirements on the dropout layer and keep prob op + + Cons + ==== + - sensitive to the dropout layer pattern. The pattern of dropout + layer may differ across different version of tensorflow so this + transformer may fail to match the dropout layer if the given graph + is not using the same version + """ + METHOD_NAME = 'dropout_v2' + KWARGS_NAMESCOPE = '_utensor_dropout_v2' @property def pattern_ugraph(self): diff --git a/utensor_cgen/transformer/pipeline.py b/utensor_cgen/transformer/pipeline.py index 9eea45a0..6683ca44 100644 --- a/utensor_cgen/transformer/pipeline.py +++ b/utensor_cgen/transformer/pipeline.py @@ -5,17 +5,18 @@ from .linear_reoder import (Linear_Reorder_Transformer, LinearReorderTransformerV2) from .ns_transformer import (BatchNormTransformer, BiasAddTransformer, - DropoutTransformer, FakeGatherV2Transformer, - InlineTransformer) + DropoutTransformer, DropoutTransformerV2, + FakeGatherV2Transformer, InlineTransformer) from .optimizer import IdOpRemoveOptimizer, RefCntOptimizer from .quantize import QuantizeTransformer class TransformerPipeline(object): - _TRANSFORMER_MAP = { + TRANSFORMER_MAP = { RefCntOptimizer.METHOD_NAME: RefCntOptimizer, DropoutTransformer.METHOD_NAME: DropoutTransformer, + DropoutTransformerV2.METHOD_NAME: DropoutTransformerV2, BatchNormTransformer.METHOD_NAME: BatchNormTransformer, QuantizeTransformer.METHOD_NAME: QuantizeTransformer, InlineTransformer.METHOD_NAME: InlineTransformer, @@ -37,7 +38,7 @@ def __init__(self, methods): """ self._pipeline = [] for method, kwargs in methods: - trans_cls = self._TRANSFORMER_MAP.get(method, None) + trans_cls = self.TRANSFORMER_MAP.get(method, None) if trans_cls is None: raise ValueError("Unknown transformation method: {}".format(method)) transformer = trans_cls(**kwargs) @@ -54,12 +55,12 @@ def pipeline(self): @classmethod def all_transform_methods(cls): - return list(cls._TRANSFORMER_MAP.keys()) + return list(cls.TRANSFORMER_MAP.keys()) @classmethod def register_transformer(cls, trans_cls, overwrite=False): assert issubclass(trans_cls, Transformer), \ "expecting Transformer type, get %s" % trans_cls - assert trans_cls.METHOD_NAME not in cls._TRANSFORMER_MAP or overwrite, \ + assert trans_cls.METHOD_NAME not in cls.TRANSFORMER_MAP or overwrite, \ "Registering existing transformer without overwriting" - cls._TRANSFORMER_MAP[trans_cls.METHOD_NAME] = trans_cls + cls.TRANSFORMER_MAP[trans_cls.METHOD_NAME] = trans_cls