diff --git a/images/scipy-ml-notebook/Dockerfile b/images/scipy-ml-notebook/Dockerfile index 941be2b8..db9803fe 100644 --- a/images/scipy-ml-notebook/Dockerfile +++ b/images/scipy-ml-notebook/Dockerfile @@ -9,7 +9,7 @@ USER root # coerce rebuild in only this nteb -ARG LIBNVINFER=7.2.2 LIBNVINFER_MAJOR_VERSION=7 CUDA_VERSION=11.8 +ARG LIBNVINFER=7.2.2 LIBNVINFER_MAJOR_VERSION=7 CUDA_VERSION=12.2 RUN apt-get update && \ apt-get install -y \ @@ -22,6 +22,7 @@ RUN ln -s libncurses.so.6 /usr/lib/x86_64-linux-gnu/libncurses.so.5 COPY run_jupyter.sh / RUN chmod +x /run_jupyter.sh +# TODO: Investigate which of these are needed COPY cudatoolkit_env_vars.sh cudnn_env_vars.sh tensorrt_env_vars.sh /etc/datahub-profile.d/ COPY activate.sh /tmp/activate.sh COPY workflow_tests /opt/workflow_tests @@ -29,19 +30,25 @@ ADD manual_tests /opt/manual_tests RUN chmod 777 /etc/datahub-profile.d/*.sh /tmp/activate.sh +RUN apt update && apt install -y wget && \ + wget https://developer.download.nvidia.com/compute/cuda/repos/debian11/x86_64/libcudnn8_8.9.6.50-1+cuda12.2_amd64.deb && \ + dpkg -i libcudnn8_8.9.6.50-1+cuda12.2_amd64.deb && \ + rm libcudnn8_8.9.6.50-1+cuda12.2_amd64.deb && \ + apt-get clean && \ + rm -rf /var/lib/apt/lists/* + USER jovyan -# CUDA 11 +# CUDA 12 # tf requirements: https://www.tensorflow.org/install/pip#linux -RUN mamba install \ - cudatoolkit=11.8 \ - nccl \ - -y && \ +RUN mamba install -c "nvidia/label/cuda-12.2" cuda-nvcc -y && \ fix-permissions $CONDA_DIR && \ fix-permissions /home/$NB_USER && \ - mamba clean -a -y + mamba clean -a -y -RUN mamba install -c "nvidia/label/cuda-11.8.0" cuda-nvcc -y && \ +#RUN mamba list | egrep '(cuda-version|nvidia/label/cuda)' | awk '{ print $1"=="$2;}' > public/envs/test3/conda-meta/pinned + +RUN mamba install nccl -c conda-forge -y && \ fix-permissions $CONDA_DIR && \ fix-permissions /home/$NB_USER && \ mamba clean -a -y @@ -60,16 +67,10 @@ RUN pip install --no-cache-dir protobuf==3.20.3 RUN pip install opencv-contrib-python-headless \ opencv-python \ datascience \ - #PyQt5 \ - #scapy \ - #nltk \ - #pycocotools \ - #pillow \ - nvidia-cudnn-cu11==8.6.0.163 \ - tensorflow==2.13.* \ - #keras==2.13.1 \ + nvidia-cudnn-cu12==8.9.6.50 \ + tensorflow==2.14.0 \ tensorflow-datasets \ - tensorrt==8.5.3.1 && \ + tensorrt==8.6.1 && \ fix-permissions $CONDA_DIR && \ fix-permissions /home/$NB_USER && \ pip cache purge @@ -97,12 +98,6 @@ RUN mamba install pyqt \ fix-permissions /home/$NB_USER && \ mamba clean -a -y -RUN pip install nvidia-cudnn-cu11==8.6.0.163 tensorrt==8.5.3.1 && \ - fix-permissions $CONDA_DIR && \ - fix-permissions /home/$NB_USER && \ - mamba clean -a -y - - # no purge required but no-cache-dir is used. pip purge will actually break the build here! # torch must be installed separately since it requires a non-pypi repo. See stable version above @@ -136,7 +131,7 @@ ENV PATH=${PATH}:/usr/local/nvidia/bin:/opt/conda/bin # Do some CONDA/CUDA stuff # Copy libdevice file to the required path -RUN mkdir -p $CONDA_DIR/lib/nvvm/libdevice && \ - cp $CONDA_DIR/lib/libdevice.10.bc $CONDA_DIR/lib/nvvm/libdevice/ +#RUN mkdir -p $CONDA_DIR/lib/nvvm/libdevice && \ +# cp $CONDA_DIR/lib/libdevice.10.bc $CONDA_DIR/lib/nvvm/libdevice/ RUN . /tmp/activate.sh