-
Notifications
You must be signed in to change notification settings - Fork 50
/
wpod_net.py
106 lines (90 loc) · 3.49 KB
/
wpod_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Copyright (c) 2019, RangerUFO
#
# This file is part of alpr_utils.
#
# alpr_utils is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# alpr_utils is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with alpr_utils. If not, see <https://www.gnu.org/licenses/>.
import backbone
import mxnet as mx
class Detection(mx.gluon.nn.Block):
def __init__(self, **kwargs):
super(Detection, self).__init__(**kwargs)
with self.name_scope():
self._classify = mx.gluon.nn.Conv2D(2, 3, 1, 1)
self._affine = mx.gluon.nn.Conv2D(6, 3, 1, 1)
def forward(self, x):
return mx.nd.concat(
mx.nd.softmax(self._classify(x), axis=1),
self._affine(x),
dim=1
)
class WpodNet(mx.gluon.nn.Block):
def __init__(self, **kwargs):
super(WpodNet, self).__init__(**kwargs)
with self.name_scope():
self._block = mx.gluon.nn.Sequential()
backbone.add_layers(self._block, 256)
self._block.add(Detection())
def forward(self, x):
return self._block(x).transpose((0, 2, 3, 1))
class LogLoss:
def __init__(self, batch_axis=0):
self._batch_axis = batch_axis
def __call__(self, pred, label, epsilon=1e-8):
loss = -label * mx.nd.log(mx.nd.clip(pred, epsilon, 1.0))
return mx.nd.mean(loss, axis=self._batch_axis, exclude=True)
class WpodLoss:
def __init__(self, batch_axis=0):
self._log_loss = LogLoss(batch_axis)
self._l1_loss = mx.gluon.loss.L1Loss(batch_axis=batch_axis)
def __call__(self, pred, label, epsilon=1e-8):
obj_pred = pred[:, :, :, 0]
obj_label = label[:, :, :, 0]
bg_pred = pred[:, :, :, 1]
bg_label = 1 - obj_label
classify_L = self._log_loss(obj_pred, obj_label, epsilon) + self._log_loss(bg_pred, bg_label, epsilon)
affine = mx.nd.concat(
mx.nd.concat(
mx.nd.relu(pred[:, :, :, 2:3]),
pred[:, :, :, 3:4],
pred[:, :, :, 4:5],
dim=3
).expand_dims(3),
mx.nd.concat(
pred[:, :, :, 5:6],
mx.nd.relu(pred[:, :, :, 6:7]),
pred[:, :, :, 7:8],
dim=3
).expand_dims(3),
dim=3
)
unit = mx.nd.array(
[[-0.5, -0.5, 1], [0.5, -0.5, 1], [0.5, 0.5, 1], [-0.5, 0.5, 1]],
ctx=pred.context
).T.reshape((1, 1, 1, 3, 4)).tile(pred.shape[:3] + (1, 1))
points_pred = mx.nd.batch_dot(
affine.reshape((-1, 2, 3)),
unit.reshape((-1, 3, 4))
).reshape(pred.shape[:3] + (-1,))
points_label = label[:, :, :, 1:]
mask = obj_label.expand_dims(3)
affine_L = self._l1_loss(points_pred * mask, points_label * mask)
return classify_L + affine_L
if __name__ == "__main__":
net = WpodNet()
net.initialize(mx.init.Xavier())
print(net)
pred = net(mx.nd.random_uniform(shape=(4, 3, 256, 256)))
print(pred)
loss = WpodLoss()
print(loss(pred, mx.nd.random_uniform(shape=(4, 16, 16, 9))))