-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathd4_config.py
executable file
·119 lines (110 loc) · 3.53 KB
/
d4_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import configparser
import os
def retrieve_args(ini_filepath: str) -> dict:
"""reads the supplied ini file, checks for data types and returns args as
dict for run_all
:parameter
- ini_filepath:
file path to the ini file
:return
- converted_args:
dict with all args from the ini file converted to their data type
"""
config = configparser.ConfigParser()
config.read(ini_filepath)
# convert args from str to right data type
converted_args = {}
config_data = config["run args"]
for i in config_data:
i_data = config_data[i]
# converte None
if i_data.upper() == "NONE" or i_data == "":
converted_args[i] = None
elif any(map(str.isdigit, i_data)):
# converte to int
if i_data.isdigit():
converted_args[i] = int(i_data)
else:
# convert to float
try:
converted_args[i] = float(i_data)
# convert to str
except ValueError:
converted_args[i] = i_data
else:
# convert to bool
try:
converted_args[i] = config_data.getboolean(i)
except ValueError:
converted_args[i] = i_data
none_type = type(None)
type_check = {
"architecture": str,
"protein_name": [str, none_type],
"optimizer": str,
"tsv_filepath": str,
"pdb_filepath": str,
"wt_seq": str,
"number_mutations": str,
"variants": str,
"score": str,
"dist_thr": [int, float],
"max_train_mutations": [int, none_type],
"training_epochs": int,
"test_num": int,
"first_ind": int,
"alignment_file": str,
"query_name": str,
"random_seed": [type(None), int],
"deploy_early_stop": bool,
"es_monitor": str,
"es_min_d": float,
"es_patience": int,
"es_mode": str,
"restore_bw": bool,
"load_trained_model_path": [str, none_type],
"batch_size": int,
"save_figures": [str, none_type],
"show_figures": bool,
"write_to_log": bool,
"silent_execution": bool,
"extensive_test": bool,
"save_model": bool,
"load_trained_weights_path": [str, none_type],
"no_nan": bool,
"settings_test": bool,
"p_dir": [str, none_type],
"validate_training": bool,
"learning_rate": float,
"transfer_conv_weights": [str, none_type],
"train_conv_layers": bool,
"write_temp": bool,
"split_file_creation": bool,
"use_split_file": [str, none_type],
"data_aug": bool,
"clear_error_log": bool,
"split0": float,
"split1": float,
"split2": float,
"reduce": bool,
"jit": bool,
}
# check if all inputs got converted to the right type
for k, v in converted_args.items():
check = type_check[k]
cur_type = type(v)
check_pass = True
if type(check) == list:
if cur_type not in check:
check_pass = False
else:
if not cur_type == check:
check_pass = False
if not check_pass:
raise TypeError(
"{} got converted to type '{}' but needs type"
"‘{}‘- please check input".format(k, cur_type, check)
)
return converted_args
if __name__ == "__main__":
print(retrieve_args("./datasets/config_files/config.ini"))