-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNPC_plotting.py
431 lines (326 loc) · 16.8 KB
/
NPC_plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 6 16:21:05 2021
@author: maria
"""
import numpy as np
import math
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
import seaborn as sns
from warnings import warn
import matplotlib.animation as animation
from matplotlib.patches import Circle
import DeformNPC
import Analyse_deformed
import matplotlib.cm as cm
from matplotlib.colors import ListedColormap
Pos2D = DeformNPC.Pos2D
Sol2D = DeformNPC.Sol2D
def OffsetNPCs(NPCcoords, NPCs, maxr):
"Arrange NPCs on a grid by offsetting them a multiple of their radius maxr in x and y direction"
NPCoffset = np.copy(NPCcoords)
n = len(NPCs)
# Determine the number of rows and columns needed. The last cells on the grid might stay empty
ncols = math.ceil(np.sqrt(n))
nrows = math.ceil(n/ncols)
x = 0 #indexing x coordinate
y = 1 # indexing y coordinate
i = 0 # will get updated
for row in range(ncols):
for col in range(nrows):
if (i < n):
NPCoffset[np.where(NPCoffset[:,3] == i), y] += col*3*maxr # TODO: switch row and col back
NPCoffset[np.where(NPCoffset[:,3] == i), x] += row*3*maxr
i += 1
return NPCoffset
def OverviewPlot(NPCcoords, NPCs, mag, r, ellipse = False, circle = False):
maxr = max(r)
NPCoffset = OffsetNPCs(NPCcoords, NPCs, maxr)
if len(NPCs) == 1:
markersize = 20
else: markersize = 5
# prepare to colourcode z position
zs = NPCoffset[:,2]
zcolour = []
zcolour.extend(ColourcodeZ(list(zs)))
mincolour = float(min(zcolour))
maxcolour = float(max(zcolour))
# plot
plt.rcParams.update({'font.size': 50})
fig, ax = plt.subplots(1, 1, figsize = (25, 25))
ax.set_title("mag " + str(mag))
ax.scatter(NPCoffset[:,0], NPCoffset[:,1], c = zcolour, s = np.min(r)*markersize)
# fit circle and/or ellipse
if ellipse:
for i in range(len(NPCs)): plotEllipse(NPCoffset[NPCoffset[:,3]==i], ax, len(NPCs))
if circle:
for i in range(len(NPCs)):
plotCircle(NPCoffset[NPCoffset[:,3]==i], ax, len(NPCs))
# colourbar for z position
incr = (maxcolour - mincolour)/max(zs) # increment in colour
cmap = (ListedColormap( [str(i) for i in list(np.arange(mincolour, maxcolour + 0.5*incr, incr))]))
norm = plt.Normalize(min(zs), max(zs))
fig.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap), shrink = 0.7, label = "z [nm]", ticks = [min(zs), max(zs)])
ax.set(xlabel = "x [nm]", ylabel = "y [nm]")
ax.axis("scaled")
fig.tight_layout()
def plotEllipse(NPC, ax, n):
X = NPC[:,0]
Y = NPC[:,1]
x, values = Analyse_deformed.fitEllipse(NPC)
# Plot the least squares ellipse
x_coord = np.linspace(min(X)-10, max(X)+10, 20)
y_coord = np.linspace(min(Y)-10, max(Y)+10, 20)
X_coord, Y_coord = np.meshgrid(x_coord, y_coord)
Z_coord = x[0] * X_coord ** 2 + x[1] * X_coord * Y_coord + x[2] * Y_coord**2 + x[3] * X_coord + x[4] * Y_coord
ax.contour(X_coord, Y_coord, Z_coord, levels=[1], colors=('m'), linewidths=4)
# print infotext
if n <= 16:
fontsize = 25
if n <= 9: fontsize = 35
if n <= 4: fontsize = 40
info = ("a = " + str(round(values["el_major"], ndigits = 1)) + "\n" + "b/a = " +
str(round(values["el_q"], ndigits = 2)) + "\n"+ "rho = " + str(round(math.degrees(values["el_rot"]), ndigits = 1)))
ax.text(np.mean(NPC[:,0])-25, np.mean(NPC[:,1])-10, info, fontsize = fontsize)
def plotCircle(NPC, ax, n):
xc, yc, r, _ = Analyse_deformed.fitCircle(NPC) # x and y position of centre, radius
c = Circle((xc,yc), radius = r, facecolor='none', edgecolor = "b", linewidth=4)
ax.add_artist(c)
def ColourcodeZ(z, darkest = 0.1, brightest = 0.8):
'''colourcode z, smaller values are shown darker'''
return [str(i) for i in np.interp(z, (min(z), max(z)), (darkest, brightest))]
def Plot2D(solution, z, symmet, nConnect, linestyle = "-", trajectory = True,
colourcode = True, springs = True, anchorsprings = True, markersize = 20,
forces = 0, showforce = False, legend = False): # TODO
'''
solution: Output of solve_ivp
symmet: number of nodes per ring
nConnect: number of neighbours connected on each side per node
linestyle (default: "-"): Linestyle in 1st plot
legend (default: False): Whether to show a legend in the 1st plot
colourcode (default: True): colourcodes trajectory with velocity
colourbar (default: True): Plots colourbar in 2nd plot if True and if colourcode is True
mainmarkercolor: Colour of nodes in 2nd plot
'''
nRings = len(z)
plt.rcParams.update({'font.size': 25})
fig, ax = plt.subplots(1, 1, figsize = (12, 12))
viewFrame = -1 # 0 is the first frame, -1 is the last frame
mainmarkercolor = ColourcodeZ(z)
for i in range(nRings):
nFrames = len(solution[i].t)# Nodes at last timestep
pos2D, vel2D = Sol2D(solution[i])
ax.plot(pos2D[viewFrame, :symmet, 0], pos2D[viewFrame,:symmet, 1],
linestyle = "", marker = "o", color="gray", markerfacecolor = mainmarkercolor[i],
markersize = markersize, zorder = 50, label = str(round(z[i], 1)))
if (anchorsprings):
# Anchor springs
ax.plot([0,0], [0,0], marker = "o", color = "lightgray", markersize = 15)
for j in range(symmet):
ax.plot((pos2D[viewFrame, j, 0], 0), (pos2D[viewFrame, j, 1], 0),
linestyle = ":", marker = "", color="lightgray")
# circumferential springs
if(springs):
for ni in range(1, nConnect+1): # neighbours to connect to
for j in range(symmet): # node to connect from
ax.plot(pos2D[viewFrame, (j, (j+ni)%symmet), 0], pos2D[viewFrame, (j, (j+ni)%symmet), 1],
linestyle = ":", marker = "", color="gray")#, linewidth = 5)
# Trajectories
if (trajectory):
if (colourcode): # Colourcoded trajectory
### colourcoding velocities
normvel = np.zeros((nFrames, symmet)) #nFrames, node
for j in range(symmet):
for frame in range(nFrames):
normvel[frame, j] = np.linalg.norm([vel2D[frame, j, 0], vel2D[frame, j, 1]])
norm = plt.Normalize(normvel.min(), normvel.max())
#####trajectory colorcoded for velocity
for j in range(symmet):
points = pos2D[:, j, :].reshape(-1, 1, 2)
segments = np.concatenate([points[:-1],points[1:]], axis = 1)
lc = LineCollection(segments, cmap = 'plasma', norm=norm, zorder = 100)
lc.set_array(normvel[:, j])
line = ax.add_collection(lc) # TODO will only be saved for the last ring
else: # monochrome trajectory
for j in range(symmet):
ax.plot(pos2D[:, j, 0], pos2D[:, j, 1], color = "blue", linestyle = "-")
### Force vectors
if(showforce and type(forces) != int):
#forces2d = forces.reshape(symmet, 2)
forces2d = forces[i]
for j in range(symmet):
ax.arrow(x = pos2D[0, j, 0], y = pos2D[0, j, 1],
dx = (forces2d[j, 0] - pos2D[0, j, 0]),
dy = (forces2d[j, 1] - pos2D[0, j, 1]),
width = 0.7, color="blue")
if(trajectory and colourcode and legend):
fig.legend(bbox_to_anchor=(0.1,-0.025), loc="lower left", ncol = 4, title = "z [nm]")#loc="best")
axcb = fig.colorbar(line, ax=ax, shrink = 0.7, ticks = [0])
axcb.set_label('velocity (a.u.)')
ax.axis("scaled")
ax.set(xlabel = "x (nm)", ylabel = "y (nm)")
plt.tight_layout()
def XYoverTime(solution, symmet , legend = False): #TODO: remove nRings
'''x and y positions over time'''
nRings = len(solution)
# determin number of rows and colums in final figure. One plot per NPC ring
l = 2-nRings%2
rows, cols = sorted((int((nRings/l)), l))
fig, ax = plt.subplots(rows, cols, figsize = (10*rows, 10*cols))
palette = sns.color_palette("hsv", 2*symmet)
for ring in range(nRings):
for i in range(symmet):
ax = ax.flatten()
labelx = labely = None
if ring == 0:
labelx ="x" + str(i)
labely = "y" + str(i)
ax[ring].plot(solution[ring].t, Pos2D(solution[ring])[:, i, 0], label = labelx, linestyle = "-", color = palette[i*2])
ax[ring].plot(solution[ring].t, Pos2D(solution[ring])[:, i, 1], label = labely, linestyle = "--", color = palette[i*2])
ax[ring].set_title("ring "+ str(ring))
ax[ring].set(xlabel = 't (a.u.)')
ax[ring].set(ylabel = "change in x or y [nm]")
if(legend): fig.legend(bbox_to_anchor=(1,0.9), loc="upper left")
plt.tight_layout()
plt.show()
def Plot3D(solution, z, symmet, randfs, fcoords, plotforces = False, viewFrame = -1, colour = ["black", "gray"]):
'''viewFrame: 0 is first frame, -1 is last frame'''
fig = plt.figure(figsize = (15,15))
ax = fig.add_subplot(111, projection='3d')
linewidth = 3
nRings = len(z)
colour = ColourcodeZ(z)
for ring in range(nRings):
ax.scatter(Pos2D(solution[ring])[viewFrame, : ,0], Pos2D(solution[ring])[viewFrame, :,1], z[ring], s = 300, c = str(colour[ring]), linewidths = linewidth, marker = "o")
if plotforces:
for ring in range(nRings):
for node in range(symmet):
ax.quiver(Pos2D(solution[ring])[0, node, 0], Pos2D(solution[ring])[0, node ,1], z[ring], fcoords[ring][node][0], fcoords[ring][node][1], 0, length = randfs[ring][node], normalize = True, linewidth = linewidth , edgecolor = "blue")
ax.set_xlabel('x [nm]', labelpad = 30)
ax.set_ylabel('y [nm]', labelpad = 30)
ax.set_zlabel('z [nm]', labelpad = 40, fontsize = 40)
ax.set_xticks([-25, 25])
ax.set_yticks([-25, 25])
ax.set_zticks([0, 50])
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
# color of edges that aren't axes
ax.xaxis.pane.set_edgecolor('w')
ax.yaxis.pane.set_edgecolor('w')
ax.zaxis.pane.set_edgecolor('w')
ax.grid(False)
plt.show()
#%matplotlib inline
class AnimatedScatter(object):
"""An animated scatter plot using matplotlib.animations.FuncAnimation."""
def __init__(self, solution, nConnect, symmet, r, randfs):
self.solution = solution
#self.nRings = nRings
self.nRings = len(solution)
framenumbers = []
for i in range(self.nRings): # check framenumbers are consistent for each ring
framenumbers.append(len(self.solution[i].t))
if (len(set(framenumbers)) != 1):
warn("Number of timesteps for all ring must be the same in order to animate deformation.")
return
# if (nRings != 4):
# warn("Animation function works correctly only for 4 NPC rings at the moment.")
# return
nframes = len(self.solution[0].t)
self.nConnect = nConnect
self.symmet = symmet
self.xy = self.xydata()
self.stream = self.data_stream(self.xy)
# Setup the figure and axes...
self.axscale = 1.2 * (np.amax(randfs) + max(r))
self.fig, self.ax = plt.subplots(figsize = (9, 10))
plt.rcParams.update({'font.size': 20})
# Then setup FuncAnimation.
self.ani = animation.FuncAnimation(self.fig, self.update, interval=(5000/nframes),
init_func=self.setup_plot, blit=True)
#HTML(self.ani.to_html5_video())
#self.ani.save("Damping0.mp4", dpi = 250)
plt.show()
def xydata(self):
xy = []
for ring in range(self.nRings):
xy.append(Pos2D(self.solution[ring])[:, np.append(np.arange(self.symmet), 0)])
return xy
def setup_plot(self):
"""Initial drawing of the scatter plot."""
self.lines = []
for i in range(int(self.nRings*2 + self.symmet*self.nRings*self.nConnect)): #TODO code for 4 rings only!
if (i <= 1): # 0, 1: lower rings
self.lobj = self.ax.plot([], [], marker = "o", color = "gray", markerfacecolor = "black", linestyle = "", markersize = 15)
elif (i > 1 and i <=3): #2, 3 upper rings
self.lobj = self.ax.plot([], [], marker = "o", color = "gray", markerfacecolor = "gray", linestyle = "", markersize = 15)
elif (i > 3 and i <= 7): #4, 5, 6, 7: 4 rings to anchor
self.lobj = self.ax.plot([], [], marker = "", color = "orange", linestyle = "-", zorder = 0) # anchor
else: # 8 - ? #all circumferential springs
self.lobj = self.ax.plot([], [], marker = "", color = "blue", linestyle = "-")
self.lines.append(self.lobj)
# self.lines = []
# for i in range(int(self.nRings*2 + self.symmet*self.nRings*self.nConnect)): #TODO code for 4 rings only!
# if (i <= 0): # 0 lower ring
# self.lobj = self.ax.plot([], [], marker = "o", color = "gray", markerfacecolor = "black", linestyle = "", markersize = 15)
# elif (i > 0 and i <= 1): #1: ring to anchor
# self.lobj = self.ax.plot([], [], marker = "", color = "orange", linestyle = "-", zorder = 0) # anchor
# else: # 8 - ? #all circumferential springs
# self.lobj = self.ax.plot([], [], marker = "", color = "blue", linestyle = "-")
# self.lines.append(self.lobj)
self.ax.axis("scaled")
self.ax.set(xlabel = "x (nm)", ylabel = "y (nm)")
self.ax.axis([-self.axscale, self.axscale, -self.axscale, self.axscale])
return [self.lines[i][0] for i in range(int(self.nRings*2 + self.symmet*self.nRings*self.nConnect))]
def data_stream(self, pos):
x = np.zeros((self.symmet+1, self.nRings))
y = np.zeros((self.symmet+1, self.nRings))
while True:
for i in range(len(self.xy[0])):
for ring in range(self.nRings):
x[:, ring] = self.xy[ring][i][:, 0]
y[:, ring] = self.xy[ring][i][:, 1]
yield x, y
def update(self, i):
"""Update the plot."""
x, y = next(self.stream)
xa = np.zeros((2*self.symmet, self.nRings))
ya = np.zeros((2*self.symmet, self.nRings))
for ring in range(self.nRings):
for i in range(1, 2*self.symmet, 2):
xa[i, ring] = x[int((i-1)/2), ring]
ya[i, ring] = y[int((i-1)/2), ring]
xlist = list(x.T) + list(xa.T)
ylist = list(y.T) + list(ya.T)
for lnum, self.line in enumerate(self.lines):
if lnum >= len(xlist):
break
self.line[0].set_data(xlist[lnum], ylist[lnum])
# TODO code works only for 4 rings!
count = len(xlist)
for lnum in range(self.nRings):
for ni in range(1, self.nConnect+1): # neighbours to connect to
for i in range(self.symmet): # node to connect from
self.lines[count][0].set_data((xlist[lnum][i], xlist[lnum][(i+ni)%self.symmet]), (ylist[lnum][i], ylist[lnum][(i+ni)%self.symmet]))
count += 1
return [self.lines[i][0] for i in range(int(self.nRings*2 + self.symmet*self.nRings*self.nConnect))]
if __name__ == '__main__':
# a = AnimatedScatter(solution, nRings, nConnect, symmet, r, randfs)
plt.show()
#XYoverTime(solution)
#Plotforces(fcoords, initcoords)
#Plot2D(solution, anchorsprings=False, radialsprings=False, trajectory=True, legend = False)
#Plot3D(solution, z, symmet, viewFrame = -1)#, colour = ["black", "black", "gray", "gray"])
#zcolour = list(np.ones(len(NPCoffset[:,2])))
#zcolour =
#NPCoffsetlist = list(NPCoffset[:,2])
#zcolour = NPCoffsetlist[0.1 if i<20 else 0.9 for i in NPCoffsetlist]
#zcolour = ["0.2" if i<20 else "0.7" for i in NPCoffsetlist]
# fig, ax = plt.subplots(1, 1, figsize = (32, 18))
# #ax.set_title("mag " + str(mag))
# ax.scatter(NPCoffset[:,0], NPCoffset[:,1], c = zcolour)#, cmap = 'copper')
# ax.set(xlabel = "nm", ylabel = "nm")
# ax.axis("scaled")