-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
306 lines (265 loc) · 11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import argparse
from typing import List
import torch
from tqdm import tqdm; BAR_FORMAT = "{l_bar}{bar:50}{r_bar}{bar:-10b}"
from agent import Agent
from buffer import ReplayBuffer
import numpy as np
import scipy.stats as st
from env_wrapper import create_env
from maddpg import MADDPG
import wandb
from wandb.sdk.wandb_run import Run
from wandb.sdk.lib import RunDisabled
from datetime import date
from time import time, sleep
import gradient_estimators
import yaml
import os.path as path
def play_episode(
env,
buffer : ReplayBuffer | None,
max_episode_length,
action_fn,
render=False,
reward_per_agent=False,
):
obs = env.reset()
dones = [False] * env.n_agents
episode_steps = 0
episode_return = 0
while not any(dones):
if (render):
env.render()
sleep(0.03)
acts = action_fn(obs)
nobs, rwds, dones, _ = env.step(np.array(acts))
episode_steps += 1
if (episode_steps >= max_episode_length): # Some envs don't have done flags,
dones = [True] * env.n_agents # so manually set them here
if buffer is not None:
buffer.store(
obs=obs,
acts=acts,
rwds=rwds,
nobs=nobs,
dones=dones,
)
episode_return += rwds[0] if reward_per_agent else sum(rwds)
obs = nobs
return episode_return, episode_steps
def train(config: argparse.Namespace, wandb_run: Run | RunDisabled | None):
# Set seeds
torch.manual_seed(config.seed)
np.random.seed(config.seed)
if (config.env == ""):
print("Environment not set!")
return
env = create_env(config.env)
observation_dims = np.array([obs.shape[0] for obs in env.observation_space])
buffer = ReplayBuffer(
capacity=config.replay_buffer_size,
obs_dims=observation_dims, # TODO: change format of the replay buffer input??
batch_size=config.batch_size,
)
gradient_estimator = ...
match config.gradient_estimator:
case "stgs":
gradient_estimator = gradient_estimators.STGS(config.gumbel_temp)
case "grmck":
gradient_estimator = gradient_estimators.GRMCK(config.gumbel_temp, config.rao_k)
case "gst":
gradient_estimator = gradient_estimators.GST(config.gumbel_temp, config.gst_gap)
case "tags":
gradient_estimator = gradient_estimators.TAGS(config.tags_start, config.tags_end, config.tags_period)
case _:
print("Unknown gradient estimator type")
return None
pretrained_agents = None if config.pretrained_agents == "" \
else torch.load(config.pretrained_agents)
maddpg = MADDPG(
env=env,
critic_lr=config.critic_lr,
actor_lr=config.actor_lr,
gradient_clip=config.gradient_clip,
hidden_dim_width=config.hidden_dim_width,
gamma=config.gamma,
soft_update_size=config.soft_update_size,
policy_regulariser=config.policy_regulariser,
gradient_estimator=gradient_estimator,
standardise_rewards=config.standardise_rewards,
pretrained_agents=pretrained_agents,
)
# Warm up:
for _ in tqdm(range(config.warmup_episodes), bar_format=BAR_FORMAT, postfix="Warming up..."):
_, _ = play_episode(
env,
buffer,
max_episode_length=config.max_episode_length,
action_fn=(lambda _ : env.action_space.sample()),
)
eval_returns = []
with tqdm(total=config.total_steps, bar_format=BAR_FORMAT) as pbar:
elapsed_steps = 0
eval_count = 0
while elapsed_steps < config.total_steps:
_, episode_steps = play_episode(
env,
buffer,
max_episode_length=config.max_episode_length,
action_fn=maddpg.acts,
render=False,
)
if (not config.disable_training):
for _ in range(config.train_repeats):
sample = buffer.sample()
if sample is not None:
maddpg.update(sample)
if config.log_grad_variance and elapsed_steps % config.log_grad_variance_interval == 0:
for agent in maddpg.agents:
for name, param in agent.policy.named_parameters():
wandb.log({
f"{agent.agent_idx}-{name}-grad" : torch.var(param.grad).item(),
}, step=elapsed_steps)
if (config.eval_freq != 0 and (eval_count * config.eval_freq) <= elapsed_steps):
eval_count += 1
timestep_returns = []
for _ in range(config.eval_iterations):
timestep_returns.append(play_episode(
env,
buffer,
max_episode_length=config.max_episode_length,
action_fn=maddpg.acts,
reward_per_agent=config.reward_per_agent,
)[0]
)
eval_returns.append( np.mean(timestep_returns) )
pbar.set_postfix(eval_return=f"{np.round(np.mean(timestep_returns), 2)}", refresh=True)
wandb.log({
f"Return": np.mean(timestep_returns),
f"Timestep": int(time()),
}, step=elapsed_steps)
if config.render:
play_episode(
env,
buffer,
max_episode_length=config.max_episode_length,
action_fn=maddpg.acts,
render=True,
)
elapsed_steps += episode_steps
pbar.update(episode_steps)
env.close()
if config.save_agents:
save_path = path.join("saved_agents",f"maddpg_{config.env}_{int(time())}.pt")
torch.save(maddpg.agents, save_path)
artifact = wandb.Artifact(name=f"{config.env}_agents", type="agents")
artifact.add_file(save_path)
wandb_run.log_artifact(artifact)
wandb_run.finish()
return eval_returns
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Option to override params from config file
parser.add_argument("--config_file", default="", type=str)
# Set env & seed
parser.add_argument("--env", default="", type=str)
parser.add_argument("--seed", default=0, type=int)
# Episode length etc.
parser.add_argument("--warmup_episodes", default=400, type=int)
parser.add_argument("--replay_buffer_size", default=2_000_000, type=int)
parser.add_argument("--total_steps", default=2_000_000, type=int)
parser.add_argument("--max_episode_length", default=25, type=int)
parser.add_argument("--train_repeats", default=1, type=int)
# Core hyperparams
parser.add_argument("--batch_size", default=512, type=int)
parser.add_argument("--hidden_dim_width", default=64, type=int)
parser.add_argument("--critic_lr", default=3e-4, type=float)
parser.add_argument("--actor_lr", default=3e-4, type=float)
parser.add_argument("--gradient_clip", default=1.0, type=float)
parser.add_argument("--gamma", default=0.95, type=float)
parser.add_argument("--soft_update_size", default=0.01, type=float)
parser.add_argument("--policy_regulariser", default=0.001, type=float)
parser.add_argument("--reward_per_agent", action="store_true")
parser.add_argument("--standardise_rewards", action="store_true")
# When to evaluate performance
parser.add_argument("--eval_freq", default=50_000, type=int)
parser.add_argument("--eval_iterations", default=100, type=int)
# Gradient Estimation hyperparams
parser.add_argument("--gradient_estimator", default="stgs", choices=[
"stgs",
"grmck",
"gst",
"tags",
], type=str)
parser.add_argument("--gumbel_temp", default=1.0, type=float)
parser.add_argument("--rao_k", default=1, type=int) # For GRMCK
parser.add_argument("--gst_gap", default=1.0, type=float) # For GST
parser.add_argument("--tags_start", default=5.0, type=float) # For TAGS
parser.add_argument("--tags_end", default=0.5, type=float) # For TAGS
parser.add_argument("--tags_period", default=2_000_000, type=int) # For TAGS
# Ability to save & load agents
parser.add_argument("--save_agents", action="store_true")
parser.add_argument("--pretrained_agents", default="", type=str)
parser.add_argument("--just_demo_agents", action="store_true")
# Misc
parser.add_argument("--render", action="store_true")
parser.add_argument("--disable_training", action="store_true")
# WandB
parser.add_argument("--wandb_project_name", default="maddpg-sink-project", type=str)
parser.add_argument("--disable_wandb", action="store_true")
parser.add_argument("--offline_wandb", action="store_true")
parser.add_argument("--log_grad_variance", action="store_true")
parser.add_argument("--log_grad_variance_interval", default=1000, type=int)
config = parser.parse_args()
# TODO: This is a bit gimmicky, but works for now
if (config.just_demo_agents and config.pretrained_agents != ""):
env = create_env(config.env)
agents : List[Agent] = torch.load(config.pretrained_agents)
maddpg = MADDPG(
env=env,
pretrained_agents=agents,
# ———
# Not needed for demoing
critic_lr=0,
actor_lr=0,
gradient_clip=0,
hidden_dim_width=0,
gamma=0,
soft_update_size=0,
policy_regulariser=0,
gradient_estimator=None,
standardise_rewards=False,
# ———
)
for _ in range(100):
play_episode(
env=env,
buffer=None,
max_episode_length=config.max_episode_length,
action_fn=maddpg.acts,
render=True,
)
if (input() == "e"): # Pause between renders
break
env.close()
exit(0)
if (config.config_file != ""):
with open(config.config_file) as cf:
if 'base' in (yaml_config := yaml.load(cf, Loader=yaml.FullLoader)):
with open(path.join(path.dirname(config.config_file), yaml_config['base'])) as cf_base:
vars(config).update( yaml.load(cf_base, Loader=yaml.FullLoader) )
vars(config).update( yaml_config ) # Child takes update preference
wandb_mode = "online"
if config.disable_wandb: # Disabling takes priority
wandb_mode = "disabled"
elif config.offline_wandb: # Don't sync to wandb servers during run
wandb_mode = "offline"
wandb_run = wandb.init(
project=config.wandb_project_name,
name=f"{str(date.today())}-{config.env}-{config.seed}",
entity="callumtilbury",
mode=wandb_mode,
)
wandb.config.update(config)
_ = train(config, wandb_run)