-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_loader.py
291 lines (261 loc) · 13.1 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import logging
import os.path as osp
import numpy as np
import torch
# import as data
import torchvision.transforms as transforms
from torch_geometric.datasets import QM9
import dgl
from dgl.data.utils import Subset
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def collate_molgraphs(data):
"""Batching a list of datapoints for dataloader.
Parameters
----------
data : list of 3-tuples or 4-tuples.
Each tuple is for a single datapoint, consisting of
a SMILES, a DGLGraph, all-task labels and optionally a binary
mask indicating the existence of labels.
Returns
-------
smiles : list
List of smiles
bg : DGLGraph
The batched DGLGraph.
labels : Tensor of dtype float32 and shape (B, T)
Batched datapoint labels. B is len(data) and
T is the number of total tasks.
masks : Tensor of dtype float32 and shape (B, T)
Batched datapoint binary mask, indicating the
existence of labels.
"""
if len(data[0]) == 3:
smiles, graphs, labels = map(list, zip(*data))
else:
smiles, graphs, labels, masks = map(list, zip(*data))
bg = dgl.batch(graphs)
bg.set_n_initializer(dgl.init.zero_initializer)
bg.set_e_initializer(dgl.init.zero_initializer)
labels = torch.stack(labels, dim=0)
if len(data[0]) == 3:
masks = torch.ones(labels.shape)
else:
masks = torch.stack(masks, dim=0)
return smiles, bg, labels, masks
def rearrangeLabel(y_train, minClsNum=0):
if minClsNum>0:
ycount = 0
else:
ycount = 1
y_trainNew = torch.zeros_like(y_train)
maxN = y_train.max()+1
for i in range(maxN):
tmpInd = y_train == i
if tmpInd.sum() > minClsNum:
y_trainNew[tmpInd] = ycount
ycount += 1
return y_trainNew
def partition_data(partition, n_nets, alpha, args):
logging.info("*********partition data***************")
datasetName = args.dataset
if datasetName == 'qm9':
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'QM9')
dataset = QM9(path)
# atomsLabel.pt; scaffoldLabel.pt
y = torch.load('data/scaffold_result/scffoldLabel_qm9.pt').int()
idx = torch.tensor([0, 1, 2, 3, 4, 5, 6, 12, 13, 14, 15, 11])
dataset.data.y = dataset.data.y[:, idx]
random_state = np.random.RandomState(seed=42)
perm = torch.from_numpy(random_state.permutation(np.arange(len(dataset))))
train_idx = perm[:110000]
val_idx = perm[110000:]
y_train = y[train_idx]
train_dataset, val_dataset = dataset[train_idx], dataset[val_idx]
elif datasetName in ['esol', 'freesolv', 'lipo','MUV', 'BACE', 'BBBP', 'ClinTox', 'SIDER',
'ToxCast', 'HIV', 'PCBA', 'Tox21']:
from dgllife.utils import smiles_to_bigraph
from functools import partial
from dgllife.utils import CanonicalAtomFeaturizer
node_featurizer = CanonicalAtomFeaturizer()
from dgllife.utils import CanonicalBondFeaturizer
edge_featurizer = CanonicalBondFeaturizer(self_loop=True)
if datasetName == 'freesolv':
from data import FreeSolv
dataset = FreeSolv(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
elif datasetName == 'lipo':
from data import Lipophilicity
dataset = Lipophilicity(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
elif datasetName == 'esol':
from data import ESOL
dataset = ESOL(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
elif datasetName == 'MUV':
from data import MUV
dataset = MUV(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
elif datasetName == 'BACE': #
from data import BACE
dataset = BACE(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
elif datasetName == 'BBBP': #
from data import BBBP
dataset = BBBP(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
elif datasetName == 'ClinTox': #
from data import ClinTox
dataset = ClinTox(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
elif datasetName == 'SIDER': #
from data import SIDER
dataset = SIDER(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
elif datasetName == 'ToxCast':
from data import ToxCast
dataset = ToxCast(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
elif datasetName == 'HIV':
from data import HIV
dataset = HIV(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
elif datasetName == 'PCBA':
from data import PCBA
dataset = PCBA(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
elif datasetName == 'Tox21': #
from data import Tox21
dataset = Tox21(smiles_to_graph=partial(smiles_to_bigraph, add_self_loop=True),
node_featurizer=node_featurizer,
edge_featurizer=edge_featurizer,
n_jobs=1, load=True)
else:
raise ValueError('Unexpected dataset: {}'.format(datasetName))
y = torch.load('data/scaffold_result/scffoldLabel_'+datasetName+'.pt').int()
random_state = np.random.RandomState(seed=42)
perm = torch.from_numpy(random_state.permutation(np.arange(len(dataset))))
train_idx = perm[:int(len(perm)*0.8)]
val_idx = perm[int(len(perm)*0.8):]
y_train = y[train_idx]
train_dataset, val_dataset = Subset(dataset, train_idx), Subset(dataset, val_idx)
n_train = len(train_dataset)
if partition == "homo":
total_num = n_train
idxs = np.random.permutation(total_num)
batch_idxs = np.array_split(idxs, n_nets)
net_dataidx_map = {i: batch_idxs[i] for i in range(n_nets)}
elif partition == "hetero":
min_size = 0
y_train = rearrangeLabel(y_train, 0)
y_train = y_train.numpy()
K = len(np.unique(y_train))
N = y_train.shape[0]
logging.info("N = " + str(N))
net_dataidx_map = {}
intRandomseed = 1
minNumPerClient = n_train / n_nets / 2
minNumPerClient = args.batch_size if minNumPerClient<args.batch_size else minNumPerClient
minNumPerClient = 64
count = 0
while min_size < minNumPerClient:
intRandomseed = intRandomseed+1
idx_batch = [[] for _ in range(n_nets)]
# for each class in the dataset
for k in range(K):
idx_k = np.where(y_train == k)[0]
np.random.seed(intRandomseed)
np.random.shuffle(idx_k)
proportions1 = np.random.dirichlet(np.repeat(alpha, n_nets))
## Balance
proportions2 = np.array([p * (len(idx_j) < N / n_nets) for p, idx_j in zip(proportions1, idx_batch)])
proportions3 = proportions2 / proportions2.sum()
proportions = (np.cumsum(proportions3) * len(idx_k)).astype(int)[:-1]
idx_batch = [idx_j + idx.tolist() for idx_j, idx in zip(idx_batch, np.split(idx_k, proportions))]
min_size = min([len(idx_j) for idx_j in idx_batch])
count += 1
if count>1000:
break
raise ValueError('Not valid training')
for j in range(n_nets):
np.random.shuffle(idx_batch[j])
net_dataidx_map[j] = idx_batch[j]
indexlist = []
index0 = np.where(y_train == 0)[0]
for k,v in net_dataidx_map.items():
indexlist = indexlist + v
print(np.intersect1d(index0, v).shape)
# traindata_cls_counts = record_net_data_stats(y_train, net_dataidx_map)
return train_dataset, val_dataset, net_dataidx_map
def load_partition_data(args):
datasetName = args.dataset
partition_method, partition_alpha, client_number = args.partition_method,args.partition_alpha, args.client_num_in_total
train_dataset, val_dataset, net_dataidx_map = partition_data(partition_method,
client_number,
partition_alpha, args)
train_data_num = sum([len(net_dataidx_map[r]) for r in range(client_number)])
# trainDL = DataLoader(train_dataset, batch_size=args.bs, shuffle=True, num_workers=args.numWorker, drop_last=True)
# valDL = DataLoader(val_dataset, batch_size=args.bs, num_workers=args.numWorker)
# collate_fn
# collate_fn
if datasetName in ['esol', 'freesolv', 'lipo','MUV', 'BACE', 'BBBP', 'ClinTox', 'SIDER',
'ToxCast', 'HIV', 'PCBA', 'Tox21']:
from torch.utils.data import DataLoader
collate_fn1 = collate_molgraphs
elif datasetName=='qm9':
from torch_geometric.data import DataLoader
collate_fn1 = None
trainDL = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.numWorker,
drop_last=True, pin_memory=False, collate_fn=collate_fn1)
valDL = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.numWorker, pin_memory=False, collate_fn=collate_fn1)
logging.info("train_dl_global number = " + str(len(trainDL)))
logging.info("test_dl_global number = " + str(len(valDL)))
test_data_num = len(val_dataset)
# get local dataset
data_local_num_dict = dict()
train_data_local_dict = dict()
test_data_local_dict = dict()
for client_idx in range(client_number):
dataidxs = net_dataidx_map[client_idx]
local_data_num = len(dataidxs)
data_local_num_dict[client_idx] = local_data_num
logging.info("client_idx = %d, local_sample_number = %d" % (client_idx, local_data_num))
dataidxs = torch.Tensor(dataidxs).long()
# training batch size = 64; algorithms batch size = 32
if datasetName in ['esol', 'freesolv', 'lipo', 'MUV', 'BACE', 'BBBP', 'ClinTox', 'SIDER',
'ToxCast', 'HIV', 'PCBA', 'Tox21']:
localDataset = Subset(train_dataset, dataidxs)
elif datasetName == 'qm9':
localDataset = train_dataset[dataidxs]
train_data_local = DataLoader(localDataset, batch_size=args.batch_size, shuffle=True,
num_workers=0, drop_last=True, pin_memory=True,collate_fn=collate_fn1)
test_data_local = train_data_local
logging.info("client_idx = %d, batch_num_train_local = %d, batch_num_test_local = %d" % (
client_idx, len(train_data_local), len(test_data_local)))
train_data_local_dict[client_idx] = train_data_local
test_data_local_dict[client_idx] = test_data_local
return train_data_num, test_data_num, trainDL, valDL, \
data_local_num_dict, train_data_local_dict, test_data_local_dict, 1