-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathload_data.py
38 lines (34 loc) · 1.38 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# this is specifically written for the three noisy MNIST case
# might not generalize!
import os
import numpy as np
import theano
from sklearn.model_selection import train_test_split
from scipy.io import loadmat
from collections import Counter
# assume these files exist in the same location as this script and all others
mat_filenames = ['mnist-with-awgn.mat', 'mnist-with-motion-blur.mat',
'mnist-with-reduced-contrast-and-awgn.mat']
def load_noisy_mnist_data(mat_filenames=mat_filenames):
"""
matfiles have train_x,y and test_x,y need to generate validation set
"""
data_list = []
for mat_file_ in mat_filenames:
m_dict = loadmat(mat_file_)
all_train_x = m_dict['train_x']
all_train_y = m_dict['train_y']
# the train set has 60K so use 10K as val
train_x, val_x, train_y, val_y = train_test_split(all_train_x, all_train_y,
test_size = (1./6), random_state=27)
# onehot to interger for {}_y
train_set = make_numpy_array(train_x, np.argmax(train_y, axis=1))
val_set = make_numpy_array(val_x, np.argmax(val_y, axis=1))
test_set = make_numpy_array(m_dict['test_x'], np.argmax(m_dict['test_y'], axis=1))
data_list.append([train_set, val_set, test_set])
return data_list
def make_numpy_array(data_x, data_y):
"""converts the input to numpy arrays"""
data_x = np.asarray(data_x, dtype=theano.config.floatX)
data_y = np.asarray(data_y, dtype='int32')
return (data_x, data_y)