-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNewConvNet.py
165 lines (130 loc) · 6.45 KB
/
NewConvNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import tensorflow as tf
from TF_Helper import *
import os
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
import numpy as np
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('n_classes', 2, 'Number of classes in the data.')
flags.DEFINE_integer('batch_size', 70, 'Mini-Batch Size.')
flags.DEFINE_float('dropout', 0.5, 'Keep probability for training dropout.')
flags.DEFINE_string('train_file', 'garage_door224_TRAIN.tfrecords', 'Name of the TFRecords file used for training.')
flags.DEFINE_string('test_file', 'garage_door224_TEST.tfrecords', 'Name of the TFRecords file used for testing.')
flags.DEFINE_string('train_dir','/home/mcamp/PycharmProjects/GarageDoor/',
'Path to the directory housing training data and other project files.')
flags.DEFINE_integer('n_epochs', 5000, 'The number of epochs the model is to run.')
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
with tf.name_scope('TrainingData'):
X_train_batch, y_train_batch = inputs(FLAGS.train_dir,
FLAGS.train_file,
FLAGS.batch_size,
FLAGS.n_epochs,
FLAGS.n_classes,
one_hot_labels=True,
imshape=150528)
with tf.name_scope('TestingData'):
X_test_batch, y_test_batch = inputs(FLAGS.train_dir,
FLAGS.test_file,
75,
FLAGS.n_epochs,
FLAGS.n_classes,
one_hot_labels=True,
imshape=150528)
with tf.Session() as sess:
with tf.name_scope('SampleImages'):
S = tf.placeholder(tf.float32, shape=[5, 224, 224, 3])
# sample_labels = tf.placeholder(tf.float32, shape=[None, 2])
with tf.name_scope('Input'):
X = tf.placeholder(tf.float32, shape=[None, 224 * 224 * 3])
y_ = tf.placeholder(tf.float32, shape=[None, FLAGS.n_classes])
with tf.name_scope('Conv1'):
W_conv1 = weight_variable([5, 5, 3, 25])
b_conv1 = bias_variable([25])
X_image = tf.reshape(X, [-1, 224, 224, 3])
h_conv1 = tf.nn.relu(conv2d(X_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
with tf.name_scope('Conv2'):
W_conv2 = weight_variable([5, 5, 25, 50])
b_conv2 = bias_variable([50])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
with tf.name_scope('Dense'):
W_fc1 = weight_variable([56 * 56 * 50, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 56 * 56 * 50])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, FLAGS.n_classes])
b_fc2 = bias_variable([FLAGS.n_classes])
with tf.name_scope('Out'):
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
with tf.name_scope('LossFunction'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
tf.summary.scalar('Loss', cross_entropy)
tf.summary.image("InputImages", X_image)
tf.summary.image("SampleImages", S)
with tf.name_scope('Accuracy'):
with tf.name_scope('CorrectPrediction'):
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_,1))
with tf.name_scope('Accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('AccuracyScore', accuracy)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
saver = tf.train.Saver()
train_writer = tf.summary.FileWriter('./train', sess.graph)
test_writer = tf.summary.FileWriter('./test', sess.graph)
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
X_test, y_test = sess.run([X_test_batch, y_test_batch])
merged = tf.summary.merge_all()
for epoch in range(FLAGS.n_epochs):
X_train, y_train = sess.run([X_train_batch, y_train_batch])
# code to add labels to images for tensorboard
im_samples = []
im_labels = []
for i in range(5):
img = np.reshape(X_train[i], [224, 224, 3]).astype('uint8')
img = Image.fromarray(img)
draw = ImageDraw.Draw(img)
font = ImageFont.load_default().font
label = str(y_train[i])
draw.text((0, 0), label, (255, 255, 255), font=font)
img = np.reshape(np.asarray(img), [224, 224, 3])
im_labels.append(y_train[i])
im_samples.append(img)
im_samples = np.asarray(im_samples).astype('float32')
im_labels = np.asarray(im_labels).astype('float32')
#########################################################
if epoch%100 == 0:
summary, train_accuracy = sess.run([merged, accuracy], feed_dict={
X: X_train, y_: y_train, keep_prob: 1.0, S: im_samples
})
train_writer.add_summary(summary, epoch)
print("Step %d, Training accuracy %g"%(epoch,train_accuracy))
save_path = saver.save(sess, './model/model.ckpt')
summary, loss = sess.run([merged, train_step], feed_dict={X: X_train, y_: y_train,
keep_prob: FLAGS.dropout, S: im_samples})
train_writer.add_summary(summary, epoch)
if epoch%50 == 0:
summary, test_accuracy = sess.run([merged, accuracy], feed_dict={
X: X_test, y_: y_test, keep_prob: 1.0, S: im_samples
})
print("Test Accuracy %g"% test_accuracy)
test_writer.add_summary(summary, epoch)
coord.request_stop()
coord.join(threads)