-
Notifications
You must be signed in to change notification settings - Fork 3
/
aes_gcm.cpp
720 lines (643 loc) · 24.3 KB
/
aes_gcm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
#include "hip_cpp_bridge.h"
#include "crypto/aes_gcm.h"
namespace {
/*****************************************************************************/
/* Defines: */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
#define Nk 8
#define Nr 14
/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox_host[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
static const uint8_t rsbox_host[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon_host[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
/*
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
* that you can remove most of the elements in the Rcon array, because they are unused.
*
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
*
* "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
*/
/*****************************************************************************/
/* Private functions: */
/*****************************************************************************/
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
__device__ void KeyExpansion(const uint8_t* sbox, const uint8_t* Rcon, uint8_t* RoundKey,
const uint8_t* Key)
{
unsigned i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
// The first round key is the key itself.
for (i = 0; i < Nk; ++i)
{
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
for (i = Nk; i < Nb * (Nr + 1); ++i)
{
{
k = (i - 1) * 4;
tempa[0]=RoundKey[k + 0];
tempa[1]=RoundKey[k + 1];
tempa[2]=RoundKey[k + 2];
tempa[3]=RoundKey[k + 3];
}
if (i % Nk == 0)
{
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
const uint8_t u8tmp = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = u8tmp;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = sbox[tempa[0]];
tempa[1] = sbox[tempa[1]];
tempa[2] = sbox[tempa[2]];
tempa[3] = sbox[tempa[3]];
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
if (i % Nk == 4)
{
// Function Subword()
{
tempa[0] = sbox[tempa[0]];
tempa[1] = sbox[tempa[1]];
tempa[2] = sbox[tempa[2]];
tempa[3] = sbox[tempa[3]];
}
}
j = i * 4; k=(i - Nk) * 4;
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
}
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
__device__ void AddRoundKey(uint8_t r, state_t* state, const uint8_t* RoundKey)
{
uint8_t i,j;
#pragma unroll
for (i = 0; i < 4; ++i)
{
#pragma unroll
for (j = 0; j < 4; ++j)
{
(*state)[i][j] ^= RoundKey[(r * Nb * 4) + (i * Nb) + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
__device__ void SubBytes(const uint8_t* sbox, state_t* state)
{
uint8_t i, j;
#pragma unroll
for (i = 0; i < 4; ++i)
{
#pragma unroll
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = sbox[(*state)[j][i]];
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
__device__ void ShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to left
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
__device__ uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
// MixColumns function mixes the columns of the state matrix
__device__ void MixColumns(state_t* state)
{
uint8_t i;
uint8_t Tmp, Tm, t;
#pragma unroll
for (i = 0; i < 4; ++i)
{
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
}
}
#if 0
__device__ uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
__device__ void InvMixColumns(state_t* state)
{
int i;
uint8_t a, b, c, d;
#pragma unroll
for (i = 0; i < 4; ++i)
{
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
__device__ void InvSubBytes(const uint8_t* rsbox, state_t* state)
{
uint8_t i, j;
#pragma unroll
for (i = 0; i < 4; ++i)
{
#pragma unroll
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = rsbox[(*state)[j][i]];
}
}
}
__device__ void InvShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to right
temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
// Rotate second row 2 columns to right
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to right
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
}
#endif
// Cipher is the main function that encrypts the PlainText.
__device__ void Cipher(const uint8_t* sbox, state_t* state, const uint8_t* RoundKey)
{
uint8_t r = 0;
state_t local_state;
#pragma unroll
for (int i = 0; i < 4; i++) {
#pragma unroll
for (int j = 0; j < 4; j++) {
local_state[i][j] = (*state)[i][j];
}
}
// Add the First round key to the state before starting the rounds.
AddRoundKey(0, &local_state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
#pragma unroll
for (r = 1; r < Nr; ++r)
{
SubBytes(sbox, &local_state);
ShiftRows(&local_state);
MixColumns(&local_state);
AddRoundKey(r, &local_state, RoundKey);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
SubBytes(sbox, &local_state);
ShiftRows(&local_state);
AddRoundKey(Nr, &local_state, RoundKey);
#pragma unroll
for (int i = 0; i < 4; i++) {
#pragma unroll
for (int j = 0; j < 4; j++) {
(*state)[i][j] = local_state[i][j];
}
}
}
#if 0
__device__ void InvCipher(const uint8_t* rsbox, state_t* state, const uint8_t* RoundKey)
{
uint8_t r = 0;
state_t local_state;
#pragma unroll
for (int i = 0; i < 4; i++) {
#pragma unroll
for (int j = 0; j < 4; j++) {
local_state[i][j] = (*state)[i][j];
}
}
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr, &local_state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
#pragma unroll
for (r = (Nr - 1); r > 0; --r)
{
InvShiftRows(&local_state);
InvSubBytes(rsbox, &local_state);
AddRoundKey(r, &local_state, RoundKey);
InvMixColumns(&local_state);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
InvShiftRows(&local_state);
InvSubBytes(rsbox, &local_state);
AddRoundKey(0, &local_state, RoundKey);
#pragma unroll
for (int i = 0; i < 4; i++) {
#pragma unroll
for (int j = 0; j < 4; j++) {
(*state)[i][j] = local_state[i][j];
}
}
}
#endif
__global__ void AES_key_expansion_kernel(const uint8_t* sbox, const uint8_t* Rcon,
const uint8_t* key, uint8_t* roundkey) {
int tid = hipThreadIdx_x + hipBlockIdx_x * hipBlockDim_x;
if (tid == 0) {
KeyExpansion(sbox, Rcon, roundkey, key);
}
}
__global__ void AES_encrypt_one_block_kernel(const uint8_t* sbox, const uint8_t* roundkey,
uint8_t* data) {
int tid = hipThreadIdx_x + hipBlockIdx_x * hipBlockDim_x;
if (tid == 0) {
Cipher(sbox, (state_t*)data, roundkey);
}
}
static const uint64_t gf_last4_host[16] = {
0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0 };
__device__ uint32_t get_be32(const uint8_t *a)
{
return ((uint32_t) a[0] << 24) | ((uint32_t) a[1] << 16) | ((uint32_t) a[2] << 8) | a[3];
}
__device__ void put_be32(uint8_t *a, uint32_t val)
{
a[0] = (val >> 24) & 0xff;
a[1] = (val >> 16) & 0xff;
a[2] = (val >> 8) & 0xff;
a[3] = val & 0xff;
}
__device__ void gf_mult_fast(const uint64_t* last4, const uint64_t* HL, const uint64_t* HH,
const uint8_t* x, uint8_t* output) {
int i;
uint8_t lo, hi, rem;
uint64_t zh, zl;
lo = (uint8_t)( x[15] & 0x0f );
hi = (uint8_t)( x[15] >> 4 );
zh = HH[lo];
zl = HL[lo];
#pragma unroll
for( i = 15; i >= 0; i-- ) {
lo = (uint8_t) ( x[i] & 0x0f );
hi = (uint8_t) ( x[i] >> 4 );
if( i != 15 ) {
rem = (uint8_t) ( zl & 0x0f );
zl = ( zh << 60 ) | ( zl >> 4 );
zh = ( zh >> 4 );
zh ^= (uint64_t) last4[rem] << 48;
zh ^= HH[lo];
zl ^= HL[lo];
}
rem = (uint8_t) ( zl & 0x0f );
zl = ( zh << 60 ) | ( zl >> 4 );
zh = ( zh >> 4 );
zh ^= (uint64_t) last4[rem] << 48;
zh ^= HH[hi];
zl ^= HL[hi];
}
put_be32(output, zh >> 32);
put_be32(output + 4, zh);
put_be32(output + 8, zl >> 32);
put_be32(output + 12, zl);
}
__device__ void gf_build_table(const uint8_t* h, uint64_t* HL, uint64_t* HH) {
int i, j;
uint64_t hi, lo;
uint64_t vl, vh;
hi = get_be32(h);
lo = get_be32(h + 4);
vh = (uint64_t) hi << 32 | lo;
hi = get_be32(h + 8);
lo = get_be32(h + 12);
vl = (uint64_t) hi << 32 | lo;
HL[8] = vl; // 8 = 1000 corresponds to 1 in GF(2^128)
HH[8] = vh;
HH[0] = 0; // 0 corresponds to 0 in GF(2^128)
HL[0] = 0;
for( i = 4; i > 0; i >>= 1 ) {
uint32_t T = (uint32_t) ( vl & 1 ) * 0xe1000000U;
vl = ( vh << 63 ) | ( vl >> 1 );
vh = ( vh >> 1 ) ^ ( (uint64_t) T << 32);
HL[i] = vl;
HH[i] = vh;
}
for (i = 2; i < 16; i <<= 1 ) {
uint64_t *HiL = HL + i, *HiH = HH + i;
vh = *HiH;
vl = *HiL;
for( j = 1; j < i; j++ ) {
HiH[j] = vh ^ HH[j];
HiL[j] = vl ^ HL[j];
}
}
}
__global__ void AES_GCM_setup_gf_mult_table_kernel(
const uint64_t* last4, const uint8_t* h, uint64_t* HL, uint64_t* HH,
uint64_t* HL_long, uint64_t* HH_long,
uint64_t* HL_sqr_long, uint64_t* HH_sqr_long) {
int tid = hipThreadIdx_x + hipBlockIdx_x * hipBlockDim_x;
if (tid == 0) {
gf_build_table(h, HL, HH);
uint8_t h_long[16];
uint8_t tmp[16];
for (int i = 0; i < 16; i++) {
h_long[i] = h[i];
}
for (int i = 0; i < AES_GCM_STEP - 1; i++) {
gf_mult_fast(last4, HL, HH, h_long, tmp);
for (int j = 0; j < 16; j++) {
h_long[j] = tmp[j];
}
}
gf_build_table(h_long, HL_long, HH_long);
uint8_t h_sqr_long[16];
for (int i = 0; i < 16; i++) {
h_sqr_long[i] = h_long[i];
}
for (int i = 0; i < AES_GCM_STEP - 1; i++) {
gf_mult_fast(last4, HL_long, HH_long, h_sqr_long, tmp);
for (int j = 0; j < 16; j++) {
h_sqr_long[j] = tmp[j];
}
}
gf_build_table(h_sqr_long, HL_sqr_long, HH_sqr_long);
}
}
__global__ void AES_GCM_xcrypt_kernel(uint8_t* dst, const uint8_t* sbox, const uint8_t* roundkey,
const uint8_t* nonce, const uint8_t* src, uint32_t size) {
int tid = hipThreadIdx_x + hipBlockIdx_x * hipBlockDim_x;
if (tid * AES_BLOCKLEN < size) {
uint8_t buffer[16];
#pragma unroll
for (int i = 0; i < 12; i++) {
buffer[i] = nonce[i];
}
put_be32(buffer + 12, (uint32_t)tid + 2);
Cipher(sbox, (state_t*)buffer, roundkey);
#pragma unroll
for (int i = 0; i < AES_BLOCKLEN; i++) {
dst[tid*AES_BLOCKLEN+i] = src[tid*AES_BLOCKLEN+i] ^ buffer[i];
}
}
}
__global__ void AES_GCM_mac_kernel(
uint64_t* last4, uint64_t* HL, uint64_t* HH, int num_parts,
uint8_t* input, uint32_t num_block, uint8_t* output) {
int tid = hipThreadIdx_x + hipBlockIdx_x * hipBlockDim_x;
if (tid >= num_parts) {
return;
}
__shared__ uint64_t local_last4[16];
__shared__ uint64_t local_HL[16];
__shared__ uint64_t local_HH[16];
if (hipThreadIdx_x == 0) {
#pragma unroll
for (int j = 0; j < 16; j++) {
local_last4[j] = last4[j];
local_HL[j] = HL[j];
local_HH[j] = HH[j];
}
}
__syncthreads();
uint8_t v[16], u[16];
#pragma unroll
for (int j = 0; j < 16; j++) {
v[j] = 0;
}
int head_size = num_block % num_parts;
if (tid >= num_parts - head_size) {
int block_id = head_size + tid - num_parts;
#pragma unroll
for (int j = 0; j < 16; j++) {
v[j] = input[block_id * 16 + j];
}
}
int i = head_size + tid;
#pragma unroll 16
while (i < num_block) {
gf_mult_fast(local_last4, local_HL, local_HH, v, u);
#pragma unroll
for (int j = 0; j < 16; j++) {
v[j] = u[j] ^ input[i * 16 + j];
}
i += num_parts;
}
#pragma unroll
for (int j = 0; j < 16; j++) {
output[tid * 16 + j] = v[j];
}
}
__global__ void AES_GCM_mac_final_kernel(
const uint64_t* last4, uint64_t* HL, uint64_t* HH, uint8_t* sbox, uint8_t* roundkey,
uint8_t* nonce, uint8_t* x, uint32_t input_size, uint8_t* mac) {
int tid = hipThreadIdx_x + hipBlockIdx_x * hipBlockDim_x;
if (tid == 0) {
uint8_t u[16], v[16];
gf_mult_fast(last4, HL, HH, x, v);
#pragma unroll
for (int i = 0; i < 16; i++) {
u[i] = 0;
}
put_be32(u + 12, input_size * 8);
#pragma unroll
for (int i = 0; i < 16; i++) {
u[i] ^= v[i];
}
gf_mult_fast(last4, HL, HH, u, v);
for (int i = 0; i < 12; i++) {
u[i] = nonce[i];
}
put_be32(u + 12, (uint32_t)1);
Cipher(sbox, (state_t*)u, roundkey);
#pragma unroll
for (int i = 0; i < 16; i++) {
mac[i] = v[i] ^ u[i];
}
}
}
__global__ void AES_GCM_next_nonce_kernel(uint8_t* nonce) {
int tid = hipThreadIdx_x + hipBlockIdx_x * hipBlockDim_x;
if (tid == 0) {
int i = 0;
while (i < 12) {
nonce[i]++;
if (nonce[i] > 0) break;
i++;
}
}
}
void AES_GCM_xcrypt(hip_launch_batch_t* batch, uint8_t* dst, const AES_GCM_engine* engine, const uint8_t* nonce,
const uint8_t* src, uint32_t size, hipStream_t stream) {
int num_block = (size / 16 + kBaseThreadNum-1) / kBaseThreadNum;
hipLaunchAddToBatch(batch, HIP_KERNEL_NAME(AES_GCM_xcrypt_kernel), num_block, kBaseThreadNum, 0, stream,
dst, engine->sbox, engine->aes_roundkey, nonce, src, size);
}
void AES_GCM_encrypt_one_block(const AES_GCM_engine* engine, uint8_t* data, hipStream_t stream) {
hipLaunchNOW(HIP_KERNEL_NAME(AES_encrypt_one_block_kernel), 1, 1, 0, stream,
engine->sbox, engine->aes_roundkey, data);
}
void AES_GCM_compute_mac(hip_launch_batch_t* batch, uint8_t* dst, const AES_GCM_engine* engine, const uint8_t* nonce,
const uint8_t* src, uint32_t size, hipStream_t stream) {
hipLaunchAddToBatch(batch, HIP_KERNEL_NAME(AES_GCM_mac_kernel), AES_GCM_STEP, AES_GCM_STEP, 0, stream,
engine->gf_last4, engine->HL_sqr_long, engine->HH_sqr_long, AES_GCM_STEP * AES_GCM_STEP,
src, size / 16, engine->buffer1);
hipLaunchAddToBatch(batch, HIP_KERNEL_NAME(AES_GCM_mac_kernel), AES_GCM_STEP / 8, 8, 0, stream,
engine->gf_last4, engine->HL_long, engine->HH_long, AES_GCM_STEP,
engine->buffer1, AES_GCM_STEP * AES_GCM_STEP, engine->buffer2);
hipLaunchAddToBatch(batch, HIP_KERNEL_NAME(AES_GCM_mac_kernel), 1, 1, 0, stream,
engine->gf_last4, engine->HL, engine->HH, 1, engine->buffer2, AES_GCM_STEP, dst);
hipLaunchAddToBatch(batch, HIP_KERNEL_NAME(AES_GCM_mac_final_kernel), 1, 1, 0, stream,
engine->gf_last4, engine->HL, engine->HH, engine->sbox, engine->aes_roundkey,
nonce, dst, size, dst);
}
} // end anonymous namespace
void AES_GCM_init(AES_GCM_engine** engine, const uint8_t* key, hipStream_t stream) {
HIP_CHECK(hipMalloc(engine, sizeof(AES_GCM_engine)));
AES_GCM_engine* e = *engine;
HIP_CHECK(nw_hipMemcpySync(e->sbox, sbox_host, sizeof(sbox_host), hipMemcpyHostToDevice, stream));
HIP_CHECK(nw_hipMemcpySync(e->rsbox, rsbox_host, sizeof(rsbox_host), hipMemcpyHostToDevice, stream));
HIP_CHECK(nw_hipMemcpySync(e->Rcon, Rcon_host, sizeof(Rcon_host), hipMemcpyHostToDevice, stream));
HIP_CHECK(nw_hipMemcpySync(e->key, key, AES_KEYLEN, hipMemcpyHostToDevice, stream));
hipLaunchNOW(HIP_KERNEL_NAME(AES_key_expansion_kernel), 1, 1, 0, stream,
e->sbox, e->Rcon, e->key, e->aes_roundkey);
//HIP_CHECK(hipMemset(e->gcm_h, 0, 16)); // memset async isn't supported by HIP, so we block here
AES_GCM_encrypt_one_block(e, e->gcm_h, stream);
HIP_CHECK(nw_hipMemcpySync(e->gf_last4, gf_last4_host, sizeof(gf_last4_host), hipMemcpyHostToDevice, stream));
hipLaunchNOW(HIP_KERNEL_NAME(AES_GCM_setup_gf_mult_table_kernel), 1, 1, 0, stream,
e->gf_last4, e->gcm_h, e->HL, e->HH, e->HL_long, e->HH_long, e->HL_sqr_long, e->HH_sqr_long);
// no need to synchronize since all future GPU encryption operations will be on the same stream (hopefully?)
}
void AES_GCM_destroy(AES_GCM_engine* engine) {
HIP_CHECK(hipFree(engine));
}
// dst buffer should be of size: size + crypto_aead_aes256gcm_ABYTES
void AES_GCM_encrypt(hip_launch_batch_t* batch, uint8_t* dst, const AES_GCM_engine* engine, const uint8_t* nonce,
const uint8_t* src, uint32_t size, hipStream_t stream) {
assert(size % AES_BLOCKLEN == 0);
AES_GCM_xcrypt(batch, dst, engine, nonce, src, size, stream);
AES_GCM_compute_mac(batch, &dst[size], engine, nonce, dst, size, stream);
}
// src buffer should be of size: size + crypto_aead_aes256gcm_ABYTES
void AES_GCM_decrypt(hip_launch_batch_t* batch, uint8_t* dst, const AES_GCM_engine* engine, const uint8_t* nonce,
const uint8_t* src, uint32_t size, hipStream_t stream) {
assert(size % AES_BLOCKLEN == 0);
AES_GCM_compute_mac(batch, dst, engine, nonce, src, size, stream);
// TODO verify mac for i in crypto_aead_aes256gcm_ABYTES: (dst == src[size])
AES_GCM_xcrypt(batch, dst, engine, nonce, src, size, stream);
}
void AES_GCM_next_nonce(hip_launch_batch_t* batch, uint8_t* nonce, hipStream_t stream) {
hipLaunchAddToBatch(batch, HIP_KERNEL_NAME(AES_GCM_next_nonce_kernel), 1, 1, 0, stream, nonce);
}