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Abstract

We consider the problem of evaluating the
predictive log likelihood of a previously un-
seen document under a topic model. This
task arises when cross-validating for a model
hyperparameter, when testing a model on a
hold-out set, and when comparing the per-
formance of different fitting strategies. Yet
it is known to be very challenging, as it is
equivalent to estimating a marginal likeli-
hood in Bayesian model selection. We pro-
pose a fast algorithm for approximating this
likelihood, one whose computational cost is
linear both in document length and in the
number of topics. The method is a first-order
approximation to the algorithm of Carvalho
et al. (2010a), and can also be interpreted as
a one-particle, Rao-Blackwellized version of
the “left-to-right” method of Wallach et al.
(2009). On our test examples, the proposed
method gives similar answers to these other
methods, but at lower computational cost.

1 INTRODUCTION

Topic models are a popular technique for performing
dimensionality reduction on large, unstructured text
corpora. The central idea of topic models is that doc-
uments can be represented as a weighted mixture of la-
tent themes, which are in turn represented as weighted
lists of words. An appealing property of topics is that
they can typically can be viewed semantically, as a
simple characterization of an idea or concept. This
makes them useful for exploratory data analysis of
large text collections, identifying connections between
documents, and more.
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Topic models originated with Latent Semantic Anal-
ysis (Landauer and Dumais, 1997). Blei et al. (2003)
later provided a probabilistic formulation with their
Latent Dirichlet Allocation (LDA) model. Since then,
topic models have become a fundamental tool in the
analysis of large, unstructured bodies of text, espe-
cially because the LDA framework can be extended
to incorporate additional dependencies, such as time,
geography and authorship (see Blei (2012) for an
overview). Yet it is very difficult to estimate predictive
likelihoods (equivalently, perplexity) on held-out doc-
uments under even the basic LDA model, and many
methods that have been proposed for doing so it are
insufficient and/or incorrect. Wallach et al. (2009) pro-
vide an excellent summary of past work on this issue.
Their particle-Gibbs (“left-to-right”) method does cor-
rectly approximate the held-out likelihood, but it in-
volves an expensive O(N2) resampling step, where N
is the number of words in a document.

We propose to estimate the held-out likelihood using a
sequential Monte Carlo algorithm called particle learn-
ing, or PL (Carvalho et al., 2010a). Particle learn-
ing is a recent proposal for handling parameter uncer-
tainty in state-space models—a domain very different
from the present context—and does not seem to be in
wide use by the natural language processing commu-
nity (one exception is Sales et al., 2012). Nonetheless,
it turns out to be ideally suited for estimating the pre-
dictive likelihood of a topic model.

Ultimately, we recommend a fast, deterministic ana-
logue of particle learning, involving a moment-based
approximation to the filtered distribution for the PL
sufficient statistics. We describe the full PL approach
and compare it with a Gibbs sampling approach, and
then describe the filtering-based approximation of PL.
Our empirical results suggest that the approximation
offers a favorable trade of accuracy for speed in esti-
mating held-out likelihoods. Additionally, our results
show that permuting word order and considering dif-
ferent draws of the topic distributions from the pos-
terior produce greater variation for a given evaluation
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method compared to the variation between methods.

To fix notation: let yi ∈ {1, . . . , D} be the ith word in
a document, D be the dictionary size, and K the num-
ber of topics. (Note that the yi are not word counts,
but rather dictionary indices corresponding to tokens.
For example, if y1 = 10, the first word in the document
is the 10th word in the dictionary.) Let B denote the
D ×K topic matrix whose kth column (denoted Bk)
represents the multinomial distribution over words as-
sociated with the kth topic: Bk = (B1k, . . . , BDk)T .
The document-specific topic loadings f = (f1, . . . , fK)
are then modeled as a draw from the prior distribu-
tion p(f | α). For the sake of illustration, we assume
throughout that this corresponds to the LDA model,
although neither the issues we raise nor the solution we
propose depend in any important way on this choice
of model. Under this assumption, the marginal distri-
bution for the ith word is the mixture

p(yi = d | f) ∝
K∑
k=1

fkBd,k ,

and the prior for f is f ∼ Dirichlet(α1, . . . , αK}.

We do not discuss the actual model-fitting step here.
For this we refer the reader to the discussion in Taddy
(2012), who compares various strategies based on
Markov-chain Monte Carlo, variational EM, and joint
MAP estimation of B and f for all documents.

2 SEQUENTIAL MONTE CARLO

2.1 The need for approximation

Suppose we fit a topic model to a corpus, giving us
point estimates for the topics B and the hyperparam-
eter α. (In some cases α is not estimated, but merely
fixed in the prior.) The fitting may be done by what-
ever method, so long as a point estimate for these
quantities may be extracted.

Now we observe a new document y, which we re-
call is represented as a vector of dictionary indices
(y1, . . . , yN ), yi ∈ {1, . . . , D}. We wish to compute
the marginal likelihood for this unseen document, con-
ditioning on the estimated corpus-level parameters,
p(y | B,α). This is a painful computation involving
a high-dimensional integral over the unknown vector
of topic weights for the new document:

p(y | B,α) =

∫
∆K

p(y | B, f) p(f | α) df ,

Here ∆K is the K-dimensional simplex, and p(f | α)
is the Dirichlet prior for the topic weights.

Such integrals are called marginal likelihoods
(a.k.a. evidence or predictive likelihoods) in Bayesian

inference, and arise routinely in model selection (e.g.
Berger and Pericchi, 2001). They are notoriously
difficult to compute outside simple conjugate families.
The difficulty is even more severe in the present
case, as p(y | B, f) is itself a mixture distribution
that is usually represented in terms of another high-
dimensional integral over latent allocations of words
to topics. For models of this kind, there is often no
simple way to proceed (Basu and Chib, 2003).

The calculation of such integrals by computationally
intensive means is very much an active research area in
Bayesian inference, as well as in statistical physics (e.g.
Skilling, 2006). These methods simply do not scale
to the typical topic-modeling problem, where many
different models or model-fitting strategies might be
entertained, and where a held-out set might consist of
thousands of documents or more. Since the marginal
likelihood must be calculated for each document, fast
approximations will inevitably be necessary.

There is a very different reason why an approxima-
tion to the held-out likelihood is the best that can
be expected. In most applications of topic modeling,
there is a major pre-processing step required, whereby
stop words are filtered out. These are typically high-
frequency function words, such as determiners, prepo-
sitions, and some adverbs. Without stop word fil-
tering, a “vanilla” LDA topic model is forced to ac-
count for such words, and—due to their high frequency
across all documents—they end up polluting all esti-
mated topics. These words are ignored when comput-
ing the likelihood; this means that the likelihood com-
putations are not only throwing away information, but
they are in fact throwing away a large portion of the
document—typically about half. The bias introduced
by using p(y | B,α) as an estimate of p(y, ystop | B,α)
is likely large compared to the inaccuracies of any par-
ticular technique for calculating p(y | B,α).

Further considerations in computing likelihood with
topic models come with both word order and different
samples (point estimates) of the topics. In our experi-
ments, we compute likelihoods for different draws from
the posterior of B and different word order permuta-
tions, for several evaluation methods. The results show
that both of these factors introduce greater within-
method variability than across-method variability—so
much that the different methods are essentially indis-
tinguishable from one another as good estimators of
the likelihood. So, we can only hope for an approx-
imation at best when we compute likelihood using a
point estimate and a single word order.
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2.2 Particle learning

Before getting to our deterministic approximation, we
first describe how the topic-model marginal likelihood
may be approximated using particle learning (PL).
Our approach is closest to that of Carvalho et al.
(2010b) and Merl (2009), who study the use of PL
in nonparametric Bayesian density estimation. In the
time series literature, “filtering” means tracking an un-
derlying state variable that changes in time (like the
position of a satellite observed with error). “Learning”
means estimating the fixed parameters of a hidden-
variable model as data arrives. Particle learning is one
such method. It re-casts learning about parameters as
the problem of filtering for the sufficient statistics cor-
responding to those parameters.

Let yi denote the ith word in the document, and let
y(i) denote the collection of words {y1, . . . , yi}. We fac-
torize the joint likelihood as a product of conditionals:

p(y | B,α) = p(y1 | B,α) ·
N∏
i=2

p(yi | B,α, y(i−1)) . (1)

Importantly, this factorization holds for any ordering.
Each term in the product may be written as

p(yi | B,α, y(i−1)) =

∫
∆K

p(yi | B, f) p(f | B,α, y(i−1)) .

(2)

We recognize p(f | B,α, y(i−1)) as the conditional pos-
terior for the topic weights f , given words 1 through
i − 1 in the new document. If this conditional pos-
terior were a Dirichlet distribution, then the integral
in (2), the one-step-ahead predictive likelihood, would
be available in closed form. To see this, let γi be the
latent topic indicator for word i, and observe that

p(yi = d | B, f) =

K∑
k=1

p(γi = k | f)·p(yi = d | γi = k,B) .

The integral of p(γi = k | f) may be explicitly calcu-
lated with respect to a Dirichlet prior, and the second
term inside the sum is known. Letting wik = αk + zik,

p(yi = j | B,α, zi, y(i−1)) =

K∑
k=1

(
wik∑
l wil

)
Bj,k .

This would allow us to calculate (1) term by term.

Of course, because p(f | B,α, y(i−1)) is not a Dirichlet
distribution, this simple argument fails. But it is a
mixture of Dirichlets. Introduce the latent variable
zi = (zi1, . . . , ziK), a vector whose kth entry indicates
how many words have been allocated to topic k from
words 1 through i − 1. This latent zi is a sufficient

statistic for the parameter fi, in the sense that

p(yi | B,α, zi−1, y
(i−1)) = p(yi | B,α, zi−1)

p(f | α, zi−1, y
(i−1)) = p(f | α, zi−1) . (3)

Moreover,

(f | α, zi, y(i−1)) ∼ Dir(wi1, . . . , wiK) , (4)

exploiting standard results on the conjugate Dirichlet-
multinomial family. Therefore, p(f | B,α, y(i)) may
be represented in terms of the sufficient statistic zi:

p(f | α, y(i−1)) =

∫
Z
p(f | B,α, z) p(z | B, y(i−1)) dz .

The step-i conditional posterior for the sufficient
statistic z therefore carries all the information neces-
sary to compute (1) term by term. In particle learn-
ing, we represent this distribution using a discrete, or
particle, approximation: p(z | y(i−1)) ≈ 1

M

∑M
t=1 δz(t)

for sufficiently large M , with δz representing a Dirac
measure at the point z. In this way, particle learn-
ing turns a smoothing problem for the latent alloca-
tions γ1, . . . , γi into a filtering problem for the aggre-
gated counts of allocations z1, . . . , zK . This reduction
to sufficient statistics is an important step: y(i) grows
in dimensionality as we accumulate data, whereas zi
remains of fixed dimension K.

Moreover, we may exploit a simple recursion for up-
dating our knowledge about the essential state vector
z, given the next word yi:

p(zi | y(i)) =

∫
Z
p(zi | zi−1, yi) p(zi−1 | y(i)) dzi−1

p(zi−1 | y(i)) ∝ p(zi−1 | y(i−1)) p(yi | zi−1) . (5)

This factorization shows that our discrete approxima-
tion may be updated from p(z | y(i−1) to p(z | y(i)) =
p(z | y(i−1), yi) in two steps. Let Zi−1 be the set of
particles representing our uncertainty about the essen-
tial state vector, up through word i− 1.

(1) Resample the particles in Zi−1 with replacement
M times, with weights πt proportional to the one-

step-ahead predictive likelihood for particle z
(t)
i−1.

This corresponds to the second line of (5). Sup-
posing that yi = j, the jth word in the dictionary,
these weights may be calculated from (4) as

πt = p(yi = j | z(t)
i−1) =

K∑
k=1

{
αk + z

(t)
i−1,k∑

l(αl + z
(t)
i−1,l)

}
Bj,k .

This will generate a new set Zi of M particles,
including many ties from the old particle set Zi−1.
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Algorithm 1 PL for LDA predictive likelihood

Resample(Z,Π,M): an algorithm to resample the
elements of vector Z with replacement M times,
with sampling weights Π.
B: a D ×K matrix of topics.
α: the Dirichlet hyperparameter.
M : number of particles.

Z0 : particles z
(t)
0 = (0, . . . , 0)K for t = 1, . . . ,M .

l← 0
for i = 1 to number of words do

Observe yi = j.
for t = 1 to M do

π(t) ←
∑K
k=1

{
αk+z

(t)

i−1,k∑
l
(αl+z

(t)

i−1,l
)

}
Bj,k

end for
Π← {π(1), . . . , π(M)}
l← l + log

{
M−1

∑M
t=1 π

(t)
}

Zi = Resample(Zi−1,Π,M)
for t = 1 to M do

Sample d
(t)
i = k ∈ {1, . . . ,K} where

p(d
(t)
i = k) =

{
αk + z

(t)
i,k∑

l(αl + z
(t)
i,l )

}
Bj,k

z
(t)
i,k ← z

(t)
i,k + 1.

end for
end for
Output: l, the estimated log likelihood.

(2) Propagate each particle in Zi according to the
first line of (5). Do this by drawing a particle-

specific topic assignment d
(t)
i ∈ {1, . . . ,K} for the

new word, where

p(d
(t)
i = k | z(t)

i , yi = j) ∝

{
αk + z

(t)
i,k∑

l(αl + z
(t)
i,l )

}
Bj,k ,

again supposing that yi = j. Letting k denote the

sampled topic, increment z
(t)
ik by one, and leave all

other entries of z
(t)
i unchanged.

After applying both the resampling and propagation
steps, one is left with a particle cloud Zi that approx-
imates p(z | B, y(i)).

The full particle-learning algorithm (Algorithm 1) in-
volves initializing a set of M (say, 104) particles with
empty state vectors z(t), t = 1, . . . ,M , and then re-
cursively applying these resample/propagate steps as
each word yi is processed. Although the goal of PL is
to track p(z | y(i)), the filtered posterior distribution
over the sufficient statistics, the algorithm also pro-
vides an estimate for the predictive likelihood (1) as a

by-product. This is because each contribution to the
likelihood (2) can be approximated as

p(yi | B,α, y(i−1)) ≈ L̂i =
1

M

M∑
t=1

L
(t)
i

L
(t)
i =

K∑
k=1

(
αk + z

(t)
i−1,k∑

l αl + z
(t)
i−1,l

)
Byi,k .

The overall log likelihood for the new document can
be estimated by carrying along the sum of the log L̂i
terms as the algorithm proceeds.

2.3 Comparison with Gibbs sampling

Particle learning involves the usual trick in any se-
quential Monte Carlo algorithm, which is to represent
our uncertainty about an unknown quantity using a
particle approximation. In spirit, it is therefore simi-
lar to the “left-to-right” Gibbs-sampling algorithm of
Wallach et al. (2009). This algorithm represents uncer-
tainty in p(f | B,α, y(i−1)) by introducing the latent
topic allocations of words 1 to i−1. As before, denote
this set by γ(i−1). Given γ(i−1), the conditional pos-
terior for the topic weights is Dirichlet. Wallach et al.
(2009) then marginalize over uncertainty in γ(i−1) by
representing p(γ(i−1) | y(i−1)) using a particle cloud
(say of size M), where each particle has its own com-
plete set of allocations γ(i−1). Every time a new word
is processed, three actions are taken within each par-
ticle: (1) a single Gibbs-sampling pass is made over
the previous indicators (γ1, . . . , γi−1); (2) the predic-
tive likelihood p(yi | γ(i−1), B) is calculated, using the
newly updated indicators, and added to the running
total; and (3) a topic indicator for word i is sampled
from p(γi | yi, B, γ(i−1)). Thus the number of latent
allocations that must be sampled is O(MN2), where
N is the document length.

It is evident that step 1 (backwards re-sampling of
indicators) is necessary for the particle average in
step 2 to be integrating over the correct distribution:
p(γ1, . . . , γi | B, y(i)). Approximating this smoothed
distribution is an extremely difficult task, because the
dimension of the parameter vector grows precisely at
the rate at which data yi are accumulated. In PL,
by contrast, the M particles do not represent uncer-
tainty over the full set of topic allocations. Rather,
they represent uncertainty over conditional sufficient
statistics zi for that document’s topic weights. This
can be estimated more easily, for the simple reason
that there is much less information to track. (Obvi-
ously if we knew the smoothed posterior distribution
p(γ1, . . . , γi | B, y(i)), then the conditional posterior
of z would be known trivially. But the converse is not
true.) This also reduces the computational complexity
of the algorithm to O(MN), rather than O(MN2).
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To avoid the O(N2) resampling step, it is tempting to
forego the resampling step within the left-to-right al-
gorithm. That is, once word i is assigned to a specific
topic, that allocation remains fixed (within each par-
ticle) as new words are processed. We refer to this as
the no-Gibbs left-to-right algorithm. This brings the
cost of the method back down to O(MN), at the cost
of a severely degraded approximation. We strongly
recommend against this approach, as explained below.

2.4 Sources of error in each approximation

There are many potential sources of systematic error
in each of these methods. (By this we mean errors
that are distinct from the randoms errors introduced
by any Monte Carlo method.) A problem common to
both methods is that we are approximating the indi-
vidual terms in the product (1) and multiplying to-
gether the results. The errors therefore also multiply,
rather than add up. This will be a problem with any
sequential algorithm; it is difficult to see how it can
be avoided without using Gibbs sampling (e.g. Chib,
1995) or some more general-purpose, computationally
intensive method. For the reasons already described,
these are infeasible given the scale of our data sets
and the limits of current computing technology. Thus
the bias introduced by the product approximation is
almost certainly something we will have to live with.

In particle learning, another possible source of error
is the degradation of the particle approximation to
p(z | y(i−1)) as more data is accumulated. This issue is
refereed to as “particle decay” in the sequential Monte
Carlo literature, and refers to the possibility that most
of the information content in the estimate will be car-
ried by a small handful particles. The particle-decay
issue is discussed at great length in Carvalho et al.
(2010a), as well as the paper by Lopes et. al. together
with the many published discussions of this paper in
the Valencia 9 proceedings (Lopes et al., 2011). It
is impossible to summarize these lengthy discussions
here. But it seems fair to say that there are many
examples of models where particle learning seems to
work well compared with MCMC, and at least a few
where it does not. The empirical results of Section 4
suggest that the former is more likely for topic mod-
els, although given our inability to compute a “ground
truth” answer for a high-dimensional marginal likeli-
hood, it is impossible to know this for sure.

As for the left-to-right algorithm, recall the logic of the
Gibbs-sampling step: in order for the particle cloud
to give a good approximation to p(yi | y(i−1), B), each
particle must represent a draw from the smoothed pos-
terior over the full state vector, p(γ(i−1) | B, y(i−1)).
A single Gibbs pass over the previous indicators de-
fines a transition operator that maps the current state

to a new state that accounts for the new data point.
But this one-step operator may not lead to mixing
that is sufficiently rapid for the final vector to repre-
sent a draw from the correct joint distribution. Even
if these errors introduced by poor mixing are small,
they may accumulate within a particle, and cannot be
solved with more particles. This is in some sense the
analogue of the particle-decay problem in PL.

The main issue with the left-to-right algorithm, how-
ever, is the N2 computational burden. The no-Gibbs
left-to-right algorithm alleviates this burden, but is
highly fraught. Consider one particle’s state variables
γ(i−1) = (γ1, . . . , γi−1) at step i of the algorithm. If
we do not resample each state variable γj (j < i) when
word i is observed and a new state variable γi is sam-
pled, then this particle will not represent a draw from
step-i smoothed posterior p(γ(i) | y(i), B). Instead,
each γj will be a draw from an approximation to the
step-j filtered posterior p(γj | y(j), B). Moreover, even
this approximation to each filtered posterior will de-
grade as more words are observed. Collectively, the
particles will fail to represent the correct joint distri-
bution over states, and the corresponding errors in ap-
proximating p(f | y(i−1), B) may accumulate.

Another way of seeing the problem is to recognize the
no-Gibbs left-to-right algorithm as, essentially, a ver-
sion of particle learning where particles are never re-
sampled. But the re-sampling step in PL is necessary
to maintain an approximation to the correct posterior,
meaning that the no-Gibbs left-to-right algorithm can-
not be doing the right thing. We therefore strongly
recommend against eliminating the resampling step.

3 APPROXIMATION BY
FILTERING

The proposed particle-learning algorithm for LDA is
simple enough in structure that it suggests a faster
deterministic analogue. Specifically, we explore what
happens when we avoid approximating p(z | y(i−1))
by a particle cloud, and instead approximate it using
only its first moment E(z | y(i−1)). This is similar to
Kalman filtering, where we try to track the conditional
expected value of a hidden state variable.

Specifically, we make the following approximation:

p(yi | B,α, y(i−1)) =

∫
∆K

p(yi | B, f) p(f | α, y(i−1))

≈
∫

∆K

p(yi | B, f) p(f | α, ẑi−1) ,

where ẑi−1 = E(z | y(i−1)) is the conditional expected
value for the state vector z, given y(i−1). This expected
value can be updated recursively using Algorithm 2.
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Algorithm 2 A filtering approximation to PL

B: a D ×K matrix of topics.
α: the Dirichlet hyperparameter.
M : number of particles.
z0 ← (0, . . . , 0)K
l← 0
for i = 1 to number of words do

Observe yi = j.
for k = 1 to number of topics do

wk ←
{

αk+zi−1,k∑
l
(αl+zi−1,l)

}
Bj,k

end for
S ←

∑K
k=1 wk

l← l + logS
for k = 1 to number of topics do

wk ← wk/S
zi,k ← zi−1,k + wk

end for
end for
Output: l, the estimated log likelihood.

This first-moment-only approximation undoubtedly
leads to a loss of accuracy in estimating the predic-
tive likelihood, especially for words that are processed
early on. In documents whose length is substantially
less than the number of topics, the bias introduced
may be substantial. We do not claim that this pro-
cedure is more accurate than a Gibbs-sampling ap-
proach. We merely argue that it is faster and leads
to a sensible approximation in large-data scenarios to
which MCMC methods are ill-suited. We also argue
that it is a better choice than the no-Gibbs left-to-
right algorithm. Moreover, our experiments suggest
that any bias introduced is not severe compared with
the Monte Carlo variance of existing procedures, or
with the variance introduced by the additional sources
mentioned in Section 2.

An equivalent way of describing our approximation is
as a Rao-Blackwellized, single particle version of the
no-Gibbs left-to-right algorithm. That is, we use a
single particle; we accumulate expected topic assign-
ments for each word, rather than sampling hard as-
signments; and we do not revisit past words. The Rao-
Blackwellization (i.e. carrying expected counts rather
than actual indicators) is key in maintaining a good
approximation to p(f | y(i−1), B), especially for words
visited near the beginning of the algorithm.

4 EXPERIMENTS

Our working assumption is that the full N2 resampling
step in the left-to-right algorithm is computationally
infeasible for a large corpus. If one has the resources
to pay that cost, and the need for a very accurate an-

swer, then it is probably worth running both the full
PL algorithm and the full left-to-right algorithm with
resampling, to compare the answers. A full study of
the relative merits of these (computationally expen-
sive) algorithms is clearly an area where further study
is needed, but is beyond the scope of this paper.

Here, we focus on the filter-based approximation and
the no-Gibbs left-to-right algorithm. We provide two
sets of experiments on simulated data and one set on
text corpora. For the latter, topics are estimated using
MALLET1. Both MALLET’s implementation of the
left-to-right algorithm and our own are used.2

4.1 A smaller simulated example

We first conducted a small-scale simulation to as-
sess our approximate filter-based method against three
other algorithms: full PL, the no-Gibbs left-to-right al-
gorithm, and importance sampling, a form of Monte
Carlo integration that is widely used to compute
marginal likelihoods in smaller-dimensional problems.
Our goal was to understand the variability in the likeli-
hood estimates caused by the choice of method, versus
the variability introduced by three of the other factors
mentioned in Section 2: Monte Carlo error, the ef-
fect of the order in which words are processed, and
the effect of using a single draw from the posterior to
represent the topic parameters B1, . . . , BK .

We a simulated a topic model with a D = 1000
word dictionary, K = 20 topics, and documents of
length N = 250 (roughly the length of a short news
article). Topics Bk were drawn from a symmet-
ric Dirichlet(0.05), while document-level topic weights
were drawn from a Dirichlet(α), where each element
αk was drawn from a standard log-normal. We con-
ducted four different versions of the same experiment,
focusing on a single held-out document y.

1. Fix the estimate of B to its true value. Fix an
order in which to process words. Estimate the
held-out likelihood using each algorithm 25 times.

2. Fix the estimate of B to its true value. Esti-
mate the held-out likelihood using each algorithm
25 times, each time with a different order of the
words in y.

3. Fix an order in which to process words. Let B̂ be
a draw from the posterior over B, assuming we
have observed 500 documents all simulated from
the true model. Estimate the held-out likelihood
using each algorithm 25 times, each time using a
different draw B̂.

4. Estimate the held-out likelihood using each algo-

1http://mallet.cs.umass.edu/
2For code, data and instructions for reproducing our

results, see https://github.com/utcompling/topicmodel-eval
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Filtering
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Figure 1: Results from experiments described in §4.1. L2R: left-to-right algorithm without (Gibbs) resampling.
PL: particle learning. Filtering: the filter-based approximation from §3. MC: Monte Carlo integration using
draws from the prior. The number in parentheses is the number of particles or Monte Carlo draws used.

rithm 25 times, each time using a different word
order and a different posterior draw B̂.

These results are shown in Figure 1. When both the
posterior draw and the word order are fixed (upper
left), there appear to be moderate differences, on the
order of 1% on a log scale, between the average answer
of each method. The approximate filtering method
and the no-Gibbs left-to-right algorithm (with 100 par-
ticles) are very similar in the degree to which they ap-
proximate full PL, but the filtering method does so at
1% of the computational cost.

Moreover, when both word-order variability and
posterior-draw variability are introduced, the differ-
ences between the methods look relatively smaller,
compared to the variability within each method. This
supports our earlier claim that the error introduced by
using a fast approximate method to estimate the pre-
dictive likelihood may be swamped by other sources of
variation in the entire text-processing pipeline.

4.2 Larger simulated examples

We next simulated data from a topic model of a
more realistic size: a dictionary of D = 10000 words,
N = 1000 held-out documents, a constant document
length of N = 500, and K ∈ {50, 200} topics. Hy-
perparameter settings were the same as above. This
time we simulated 10 different data sets from the same
model, to get a sense of how the different approxima-
tions compare. Figure 2 shows that, although there
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Figure 2: Comparing left-to-right (L2R, with 50 par-
ticles or one) and filtering algorithms on larger simu-
lated data. The left and middle plots show variation in
likelihood estimates for 10 different datasets for each
method (using 50 and 200 topics, respectively), and
the right plot shows correlation in estimates between
L2R with 50 particles and filtering across the 10 sim-
ulated corpora with 200 topics.

are small and detectable differences between the filter-
based approximation and the no-Gibbs left-to-right al-
gorithm, the sampling distribution of the model esti-
mates themselves dwarfs all other forms of variability.

4.3 Real corpora

Finally, we tested the approximate evaluation methods
on the six English corpora given below.

1. gutenberg: 678 public domain books (published
between 1798 and 2008) from Project Gutenberg.

2. pcltravel Ninety-four travel books from the late
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Figure 3: Results from experiments described in §4.3. L2R: left-to-right algorithm without (Gibbs) resampling.
Mallet L2R: the same algorithm as implemented in MALLET.

20th century digitized by the Perry–Castañeda Li-
brary at the University of Texas at Austin.

3. sgu: Transcripts from 139 episodes of the Skeptics
Guide to the Universe podcast.

4. 20news The 20 Newsgroups data set.
5. reuters: The Reuters-21578 Text Categorization

Collection.
6. nyt New York Times articles from a subset of the

2002 Gigaword corpus.

These provide a diverse mix of domains and time pe-
riods: fiction books (gutenberg), non-fiction books
(pcltravel), transcribed multi-individual speech
(sgu), web forums (20news), and newswire text
(reuters and nyt). Full details for each corpus, in-
cluding raw data for all except nyt and example top-
ics computed from each, are given at the repository
mentioned in footnote 2.

The gutenberg and pcltravel books were split into
sub-documents of several paragraphs each as input to
MALLET. The sgu episodes were split by show seg-
ment. Raw document boundaries were retained for the
others. Table 1 provides several measurements of each
corpus based on this splitting.

We ran each algorithm ten times, with a different draw
from the posterior used to estimate B each time (100
topics). Figure 3 shows that there are slightly more dif-
ferences between the methods here than for the simu-
lated data. However, the differences in the average an-
swers given by each method are not severe, and are of
roughly the same order of magnitude as the variation
within each method caused by having different draws
from the posterior over the topic parameters. The ad-

DATA V N N̄ StdDev
gutenberg 78556 2953834 377 55.5
pcl-travel 188765 4780051 469 367.5
sgu 26851 421621 472 678.3
20news 114547 2743124 145 353.4
reuters 43153 1528617 70 47.9
nyt 182942 21836689 405 209.6

Table 1: Corpus statistics, aggregated over both train-
ing and held-out evaluation for each data set and ig-
noring stop words. V is the vocabulary size, N the
number of tokens, N̄ the average document length, and
StdDev the standard deviation in document length.

vantage of the filtering method is that it has the same
computational cost as a one-particle version of the no-
Gibbs left-to-right algorithm, yet it consistently gives
answers that are more in line with 50-particle version.

We attempted to make our implementation of L2R as
close as possible to that in MALLET, and there are
many possible explanations for the minor discrepancies
seen in Figure 3. For example, the default in MALLET
is to ignore unseen words in evaluating held-out like-
lihoods. Our implementation takes these words into
account; we had to supply MALLET with the vocab-
ulary (but not the documents) in the evaluation set to
ensure they were part of the likelihood computation.
This brought the likelihoods much closer, though dif-
ferences remain. We merely note that the difference
in estimated likelihoods between the filter-based ap-
proach and L2R(50) is roughly the same as the differ-
ence between the two implementations of L2R(50).
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