-
Notifications
You must be signed in to change notification settings - Fork 160
/
Copy pathcnn_models.py
93 lines (72 loc) · 2.97 KB
/
cnn_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import keras
from keras.models import Model
from keras.layers import Dense, Dropout, Activation, Flatten, Input
from keras.layers import Conv2D, MaxPooling2D
from keras.layers.merge import add
from keras import regularizers
def resnet8(img_width, img_height, img_channels, output_dim):
"""
Define model architecture.
# Arguments
img_width: Target image widht.
img_height: Target image height.
img_channels: Target image channels.
output_dim: Dimension of model output.
# Returns
model: A Model instance.
"""
# Input
img_input = Input(shape=(img_height, img_width, img_channels))
x1 = Conv2D(32, (5, 5), strides=[2,2], padding='same')(img_input)
x1 = MaxPooling2D(pool_size=(3, 3), strides=[2,2])(x1)
# First residual block
x2 = keras.layers.normalization.BatchNormalization()(x1)
x2 = Activation('relu')(x2)
x2 = Conv2D(32, (3, 3), strides=[2,2], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-4))(x2)
x2 = keras.layers.normalization.BatchNormalization()(x2)
x2 = Activation('relu')(x2)
x2 = Conv2D(32, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-4))(x2)
x1 = Conv2D(32, (1, 1), strides=[2,2], padding='same')(x1)
x3 = add([x1, x2])
# Second residual block
x4 = keras.layers.normalization.BatchNormalization()(x3)
x4 = Activation('relu')(x4)
x4 = Conv2D(64, (3, 3), strides=[2,2], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-4))(x4)
x4 = keras.layers.normalization.BatchNormalization()(x4)
x4 = Activation('relu')(x4)
x4 = Conv2D(64, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-4))(x4)
x3 = Conv2D(64, (1, 1), strides=[2,2], padding='same')(x3)
x5 = add([x3, x4])
# Third residual block
x6 = keras.layers.normalization.BatchNormalization()(x5)
x6 = Activation('relu')(x6)
x6 = Conv2D(128, (3, 3), strides=[2,2], padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-4))(x6)
x6 = keras.layers.normalization.BatchNormalization()(x6)
x6 = Activation('relu')(x6)
x6 = Conv2D(128, (3, 3), padding='same',
kernel_initializer="he_normal",
kernel_regularizer=regularizers.l2(1e-4))(x6)
x5 = Conv2D(128, (1, 1), strides=[2,2], padding='same')(x5)
x7 = add([x5, x6])
x = Flatten()(x7)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
# Steering channel
steer = Dense(output_dim)(x)
# Collision channel
coll = Dense(output_dim)(x)
coll = Activation('sigmoid')(coll)
# Define steering-collision model
model = Model(inputs=[img_input], outputs=[steer, coll])
print(model.summary())
return model