-
Notifications
You must be signed in to change notification settings - Fork 160
/
common_flags.py
40 lines (30 loc) · 1.61 KB
/
common_flags.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import gflags
FLAGS = gflags.FLAGS
# Input
gflags.DEFINE_integer('img_width', 320, 'Target Image Width')
gflags.DEFINE_integer('img_height', 240, 'Target Image Height')
gflags.DEFINE_integer('crop_img_width', 200, 'Cropped image widht')
gflags.DEFINE_integer('crop_img_height', 200, 'Cropped image height')
gflags.DEFINE_string('img_mode', "grayscale", 'Load mode for images, either '
'rgb or grayscale')
# Training
gflags.DEFINE_integer('batch_size', 32, 'Batch size in training and evaluation')
gflags.DEFINE_integer('epochs', 100, 'Number of epochs for training')
gflags.DEFINE_integer('log_rate', 10, 'Logging rate for full model (epochs)')
gflags.DEFINE_integer('initial_epoch', 0, 'Initial epoch to start training')
# Files
gflags.DEFINE_string('experiment_rootdir', "./model", 'Folder '
' containing all the logs, model weights and results')
gflags.DEFINE_string('train_dir', "../training", 'Folder containing'
' training experiments')
gflags.DEFINE_string('val_dir', "../validation", 'Folder containing'
' validation experiments')
gflags.DEFINE_string('test_dir', "../testing", 'Folder containing'
' testing experiments')
# Model
gflags.DEFINE_bool('restore_model', False, 'Whether to restore a trained'
' model for training')
gflags.DEFINE_string('weights_fname', "model_weights.h5", '(Relative) '
'filename of model weights')
gflags.DEFINE_string('json_model_fname', "model_struct.json",
'Model struct json serialization, filename')