-
Notifications
You must be signed in to change notification settings - Fork 55
/
setup.py
96 lines (76 loc) · 3.2 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File : setup.py
# Author : Jiayuan Mao
# Email : [email protected]
# Date : 12/30/2021
#
# This file is part of SceneGraphParser.
# Distributed under terms of the MIT license.
from setuptools import setup, find_packages
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
setup(
name='SceneGraphParser',
# Versions should comply with PEP440. For a discussion on single-sourcing
# the version across setup.py and the project code, see
# https://packaging.python.org/en/latest/single_source_version.html
version='0.1.0',
description='A python toolkit for parsing sentences (natural language) into scene graphs (symbolic representations).',
long_description=long_description,
long_description_content_type="text/markdown",
install_requires=[
"spacy>=3.2.0",
"tabulate>=0.8.9"
],
# The project's main homepage.
url='',
# Author details
author='',
# Choose your license
license='MIT',
# See https://pypi.python.org/pypi?%3Aaction=list_classifiers
classifiers=[
# Common values are
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
'Development Status :: 3 - Alpha',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
'Topic :: Text Processing',
],
# What does your project relate to?
keywords='nlp',
# You can just specify the packages manually here if your project is
# simple. Or you can use find_packages().
packages=find_packages(exclude=["tools", "example"]),
# List run-time dependencies here. These will be installed by pip when
# your project is installed. For an analysis of "install_requires" vs pip's
# requirements files see:
# https://packaging.python.org/en/latest/requirements.html
# install_requires=["tensorflow==1.11.0","tensorflow-gpu==1.11.0", "pillow==5.4.1", "numpy"],
# List additional groups of dependencies here (e.g. development
# dependencies). You can install these using the following syntax,
# for example:
# $ pip install -e .[dev,test]
# extras_require={
# 'dev': ['check-manifest'],
# 'test': ['coverage'],
# },
# If there are data files included in your packages that need to be
# installed, specify them here. If using Python 2.6 or less, then these
# have to be included in MANIFEST.in as well.
# Attention: the root folder (used as keys) in package data must be dot separated if it goes deeper and not with /
# example src.sng_parser instead of src/sng_parser
package_data={
'sng_parser': ["_data/*.txt"],
},
# data_files=[('project/configuration', ['project/configuration/configuration.ini.template'])],
# Although 'package_data' is the preferred approach, in some case you may
# need to place data files outside of your packages. See:
# http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa
# In this case, 'data_file' will be installed into '<sys.prefix>/my_data'
# data_files=[('my_data', ['data/data_file.txt'])],
)