forked from qubic/qubic-cli
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnodeUtils.cpp
1406 lines (1314 loc) · 53.1 KB
/
nodeUtils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <cstring>
#include <vector>
#include <cstdlib>
#include <ctime>
#include <algorithm>
#include <chrono>
#include <memory>
#include <stdexcept>
#include "structs.h"
#include "connection.h"
#include "nodeUtils.h"
#include "logger.h"
#include "K12AndKeyUtil.h"
#include "keyUtils.h"
#include "walletUtils.h"
#include "qubicLogParser.h"
static CurrentTickInfo getTickInfoFromNode(QCPtr qc)
{
CurrentTickInfo result;
memset(&result, 0, sizeof(CurrentTickInfo));
struct {
RequestResponseHeader header;
} packet;
packet.header.setSize(sizeof(packet));
packet.header.randomizeDejavu();
packet.header.setType(REQUEST_CURRENT_TICK_INFO);
qc->sendData((uint8_t *) &packet, packet.header.size());
std::vector<uint8_t> buffer;
qc->receiveDataAll(buffer);
uint8_t* data = buffer.data();
int recvByte = buffer.size();
int ptr = 0;
while (ptr < recvByte)
{
auto header = (RequestResponseHeader*)(data+ptr);
if (header->type() == RESPOND_CURRENT_TICK_INFO){
auto curTickInfo = (CurrentTickInfo*)(data + ptr + sizeof(RequestResponseHeader));
result = *curTickInfo;
}
ptr+= header->size();
}
return result;
}
uint32_t getTickNumberFromNode(QCPtr qc)
{
auto curTickInfo = getTickInfoFromNode(qc);
return curTickInfo.tick;
}
void printTickInfoFromNode(const char* nodeIp, int nodePort)
{
auto qc = make_qc(nodeIp, nodePort);
auto curTickInfo = getTickInfoFromNode(qc);
if (curTickInfo.epoch != 0){
LOG("Tick: %u\n", curTickInfo.tick);
LOG("Epoch: %u\n", curTickInfo.epoch);
LOG("Number Of Aligned Votes: %u\n", curTickInfo.numberOfAlignedVotes);
LOG("Number Of Misaligned Votes: %u\n", curTickInfo.numberOfMisalignedVotes);
LOG("Initial tick: %u\n", curTickInfo.initialTick);
} else {
LOG("Error while getting tick info from %s:%d\n", nodeIp, nodePort);
}
}
static CurrentSystemInfo getSystemInfoFromNode(QCPtr qc)
{
CurrentSystemInfo result;
memset(&result, 0, sizeof(CurrentSystemInfo));
struct {
RequestResponseHeader header;
} packet;
packet.header.setSize(sizeof(packet));
packet.header.randomizeDejavu();
packet.header.setType(REQUEST_SYSTEM_INFO);
qc->sendData((uint8_t *) &packet, packet.header.size());
std::vector<uint8_t> buffer;
qc->receiveDataAll(buffer);
uint8_t* data = buffer.data();
int recvByte = buffer.size();
int ptr = 0;
while (ptr < recvByte)
{
auto header = (RequestResponseHeader*)(data+ptr);
if (header->type() == RESPOND_SYSTEM_INFO){
auto curSystemInfo = (CurrentSystemInfo*)(data + ptr + sizeof(RequestResponseHeader));
result = *curSystemInfo;
}
ptr+= header->size();
}
return result;
}
void printSystemInfoFromNode(const char* nodeIp, int nodePort)
{
auto qc = make_qc(nodeIp, nodePort);
auto curSystemInfo = getSystemInfoFromNode(qc);
if (curSystemInfo.epoch != 0){
LOG("Version: %u\n", curSystemInfo.version);
LOG("Epoch: %u\n", curSystemInfo.epoch);
LOG("Tick: %u\n", curSystemInfo.tick);
LOG("InitialTick: %u\n", curSystemInfo.initialTick);
LOG("LatestCreatedTick: %u\n", curSystemInfo.latestCreatedTick);
LOG("NumberOfEntities: %u\n", curSystemInfo.numberOfEntities);
LOG("NumberOfTransactions: %u\n", curSystemInfo.numberOfTransactions);
char hex[64];
byteToHex(curSystemInfo.randomMiningSeed, hex, 32);
LOG("RandomMiningSeed: %s\n", hex);
LOG("SolutionThreshold: %u\n", curSystemInfo.solutionThreshold);
// todo: add initial time
} else {
LOG("Error while getting system info from %s:%d\n", nodeIp, nodePort);
}
}
static void getTickTransactions(QubicConnection* qc, const uint32_t requestedTick, int nTx,
std::vector<Transaction>& txs, //out
std::vector<TxhashStruct>* hashes, //out
std::vector<extraDataStruct>* extraData, // out
std::vector<SignatureStruct>* sigs // out
)
{
txs.resize(0);
if (hashes != nullptr)
{
hashes->resize(0);
}
if (extraData != nullptr)
{
extraData->resize(0);
}
if (sigs != nullptr)
{
sigs->resize(0);
}
struct {
RequestResponseHeader header;
RequestedTickTransactions txs;
} packet;
packet.header.setSize(sizeof(packet));
packet.header.randomizeDejavu();
packet.header.setType(REQUEST_TICK_TRANSACTIONS); // REQUEST_TICK_TRANSACTIONS
packet.txs.tick = requestedTick;
for (int i = 0; i < (nTx+7)/8; i++) packet.txs.transactionFlags[i] = 0;
for (int i = (nTx+7)/8; i < NUMBER_OF_TRANSACTIONS_PER_TICK/8; i++) packet.txs.transactionFlags[i] = 0xff;
qc->sendData((uint8_t *) &packet, packet.header.size());
std::vector<uint8_t> buffer;
qc->receiveDataAll(buffer);
uint8_t* data = buffer.data();
int recvByte = buffer.size();
int ptr = 0;
while (ptr < recvByte)
{
auto header = (RequestResponseHeader*)(data+ptr);
if (header->type() == BROADCAST_TRANSACTION){
auto tx = (Transaction *)(data + ptr + sizeof(RequestResponseHeader));
txs.push_back(*tx);
if (hashes != nullptr){
TxhashStruct hash;
uint8_t digest[32] = {0};
char txHash[128] = {0};
KangarooTwelve(reinterpret_cast<const uint8_t *>(tx),
sizeof(Transaction) + tx->inputSize + SIGNATURE_SIZE,
digest,
32);
getTxHashFromDigest(digest, txHash);
memcpy(hash.hash, txHash, 60);
hashes->push_back(hash);
}
if (extraData != nullptr){
extraDataStruct ed;
ed.vecU8.resize(tx->inputSize);
if (tx->inputSize != 0){
memcpy(ed.vecU8.data(), reinterpret_cast<const uint8_t *>(tx) + sizeof(Transaction), tx->inputSize);
}
extraData->push_back(ed);
}
if (sigs != nullptr){
SignatureStruct sig;
memcpy(sig.sig, reinterpret_cast<const uint8_t *>(tx) + sizeof(Transaction) + tx->inputSize, 64);
sigs->push_back(sig);
}
}
ptr+= header->size();
}
}
static void getTickData(const char* nodeIp, const int nodePort, const uint32_t tick, TickData& result)
{
memset(&result, 0, sizeof(TickData));
static struct
{
RequestResponseHeader header;
RequestTickData requestTickData;
} packet;
packet.header.setSize(sizeof(packet));
packet.header.randomizeDejavu();
packet.header.setType(REQUEST_TICK_DATA);
packet.requestTickData.requestedTickData.tick = tick;
auto qc = make_qc(nodeIp, nodePort);
qc->sendData((uint8_t *) &packet, packet.header.size());
std::vector<uint8_t> buffer;
qc->receiveDataAll(buffer);
uint8_t* data = buffer.data();
int recvByte = buffer.size();
int ptr = 0;
while (ptr < recvByte)
{
auto header = (RequestResponseHeader*)(data+ptr);
if (header->type() == BROADCAST_FUTURE_TICK_DATA){
auto curTickData = (TickData*)(data + ptr + sizeof(RequestResponseHeader));
result = *curTickData;
}
ptr+= header->size();
}
}
int getMoneyFlewStatus(QubicConnection* qc, const char* txHash, const uint32_t requestedTick)
{
struct {
RequestResponseHeader header;
RequestTxStatus rts;
} packet;
packet.header.setSize(sizeof(packet));
packet.header.randomizeDejavu();
packet.header.setType(REQUEST_TX_STATUS); // REQUEST_TX_STATUS
packet.rts.tick = requestedTick;
qc->sendData((uint8_t *) &packet, packet.header.size());
std::vector<uint8_t> buffer;
try{
qc->receiveDataAll(buffer);
}
catch (std::logic_error& e) {
// it's expected to catch this error on some node that not turn on tx status
return -1;
}
uint8_t* data = buffer.data();
int recvByte = buffer.size();
int ptr = 0;
RespondTxStatus result;
memset(&result, 0, sizeof(result));
while (ptr < recvByte)
{
auto header = (RequestResponseHeader*)(data+ptr);
if (header->type() == RESPOND_TX_STATUS){
// notice: the node not always return full size of RESPOND_TX_STATUS
// it only returns enough digests
auto ptr_rts = (RespondTxStatus *)(data + ptr + sizeof(RequestResponseHeader));
size_t received_size = ptr_rts->size();
memcpy(&result, ptr_rts, received_size);
break;
}
ptr+= header->size();
}
int tx_id = -1;
for (int i = 0; i < result.txCount; i++){
char tx_hash[60];
memset(tx_hash, 0, 60);
getIdentityFromPublicKey(result.txDigests[i], tx_hash, true);
if (memcmp(tx_hash, txHash, 60) == 0){
tx_id = i;
break;
}
}
if (tx_id == -1){
return -1; // not found !?
}
return (result.moneyFlew[tx_id >> 3] & (1<<(tx_id & 7))) ? 1 : 0;
}
bool checkTxOnTick(const char* nodeIp, const int nodePort, const char* txHash, uint32_t requestedTick)
{
auto qc = std::make_shared<QubicConnection>(nodeIp, nodePort);
// conditions:
// - current Tick is higher than requested tick
// - has tick data
// - has txHash in tick transactions
uint32_t currenTick = getTickNumberFromNode(qc);
if (currenTick <= requestedTick)
{
LOG("Please wait a bit more. Requested tick %u, current tick %u\n", requestedTick, currenTick);
return false;
}
TickData td;
getTickData(nodeIp, nodePort, requestedTick, td);
if (td.epoch == 0)
{
LOG("Tick %u is empty\n", requestedTick);
return false;
}
int numTx = 0;
uint8_t all_zero[32] = {0};
for (int i = 0; i < NUMBER_OF_TRANSACTIONS_PER_TICK; i++){
if (memcmp(all_zero, td.transactionDigests[i], 32) != 0) numTx++;
}
std::vector<Transaction> txs;
std::vector<TxhashStruct> txHashesFromTick;
std::vector<extraDataStruct> extraData;
std::vector<SignatureStruct> signatureStruct;
getTickTransactions(qc.get(), requestedTick, numTx, txs, &txHashesFromTick, &extraData, &signatureStruct);
for (int i = 0; i < txHashesFromTick.size(); i++)
{
if (memcmp(txHashesFromTick[i].hash, txHash, 60) == 0)
{
LOG("Found tx %s on tick %u\n", txHash, requestedTick);
// check for moneyflew status
int moneyFlew = getMoneyFlewStatus(qc.get(), txHash, requestedTick);
printReceipt(txs[i], txHash, extraData[i].vecU8.data(), moneyFlew);
return true;
}
}
LOG("Can NOT find tx %s on tick %u\n", txHash, requestedTick);
return false;
}
static void dumpQuorumTick(const Tick& A, bool dumpComputorIndex = true){
char digest[64] = {0};
if (dumpComputorIndex) LOG("Computor index: %d\n", A.computorIndex);
LOG("Epoch: %d\n", A.epoch);
LOG("Tick: %d\n", A.tick);
LOG("Time: 20%02u-%02u-%02u %02u:%02u:%02u.%04u\n", A.year, A.month, A.day, A.hour, A.minute, A.second, A.millisecond);
LOG("prevResourceTestingDigest: %llu\n", A.prevResourceTestingDigest);
getIdentityFromPublicKey(A.prevSpectrumDigest, digest, true);
LOG("prevSpectrumDigest: %s\n", digest);
getIdentityFromPublicKey(A.prevUniverseDigest, digest, true);
LOG("prevUniverseDigest: %s\n", digest);
getIdentityFromPublicKey(A.prevComputerDigest, digest, true);
LOG("prevComputerDigest: %s\n", digest);
getIdentityFromPublicKey(A.transactionDigest, digest, true);
LOG("transactionDigest: %s\n", digest);
getIdentityFromPublicKey(A.expectedNextTickTransactionDigest, digest, true);
LOG("expectedNextTickTransactionDigest: %s\n", digest);
}
bool compareVote(const Tick&A, const Tick&B){
return (A.epoch == B.epoch) && (A.tick == B.tick) &&
(A.year == B.year) && (A.month == B.month) && (A.day == B.day) && (A.hour == B.hour) && (A.minute == B.minute) && (A.second == B.second) &&
(A.millisecond == B.millisecond) &&
(A.prevResourceTestingDigest == B.prevResourceTestingDigest) &&
(memcmp(A.prevSpectrumDigest, B.prevSpectrumDigest, 32) == 0) &&
(memcmp(A.prevUniverseDigest, B.prevUniverseDigest, 32) == 0) &&
(memcmp(A.prevComputerDigest, B.prevComputerDigest, 32) == 0) &&
(memcmp(A.transactionDigest, B.transactionDigest, 32) == 0) &&
(memcmp(A.expectedNextTickTransactionDigest, B.expectedNextTickTransactionDigest, 32) == 0);
}
bool verifyVoteWithSalt(const Tick&A,
const BroadcastComputors& bc,
const long long prevResourceDigest,
const uint8_t* prevSpectrumDigest,
const uint8_t* prevUniverseDigest,
const uint8_t* prevComputerDigest){
int cid = A.computorIndex;
uint8_t saltedData[64];
uint8_t saltedDigest[32];
memset(saltedData, 0, 64);
memcpy(saltedData, bc.computors.publicKeys[cid], 32);
memcpy(saltedData+32, &prevResourceDigest, 8);
KangarooTwelve(saltedData, 40, saltedDigest, 8);
if (A.saltedResourceTestingDigest != *((unsigned long long*)(saltedDigest))){
LOG("Mismatched saltedResourceTestingDigest. Computor index: %d\n", cid);
return false;
}
memcpy(saltedData+32, prevSpectrumDigest, 32);
KangarooTwelve(saltedData, 64, saltedDigest, 32);
if (memcmp(saltedDigest, A.saltedSpectrumDigest, 32) != 0)
{
LOG("Mismatched saltedSpectrumDigest. Computor index: %d\n", cid);
return false;
}
memcpy(saltedData+32, prevUniverseDigest, 32);
KangarooTwelve(saltedData, 64, saltedDigest, 32);
if (memcmp(saltedDigest, A.saltedUniverseDigest, 32) != 0)
{
LOG("Mismatched saltedUniverseDigest. Computor index: %d\n", cid);
return false;
}
memcpy(saltedData+32, prevComputerDigest, 32);
KangarooTwelve(saltedData, 64, saltedDigest, 32);
if (memcmp(saltedDigest, A.saltedComputerDigest, 32) != 0)
{
LOG("Mismatched saltedComputerDigest. Computor index: %d\n", cid);
return false;
}
return true;
}
std::string indexToAlphabet(int index){
std::string result = "";
result += char('A' + (index/26));
result += char('A' + (index%26));
return result;
}
void getUniqueVotes(std::vector<Tick>& votes, std::vector<Tick>& uniqueVote, std::vector<std::vector<int>>& voteIndices, int N,
bool verifySalt = false,
BroadcastComputors* pBC = nullptr,
const long long prevResourceDigest = 0,
const uint8_t* prevSpectrumDigest = nullptr,
const uint8_t* prevUniverseDigest = nullptr,
const uint8_t* prevComputerDigest = nullptr
)
{
if (votes.size() == 0) return;
if (verifySalt)
{
std::vector<Tick> new_votes;
LOG("Performing salt check...\n");
bool all_passed = true;
for (int i = 0; i < N; i++)
{
if (!verifyVoteWithSalt(votes[i], *pBC, prevResourceDigest, prevSpectrumDigest, prevUniverseDigest, prevComputerDigest)){
LOG("Vote %d failed to pass salt check\n", i);
dumpQuorumTick(votes[i]);
all_passed = false;
} else {
new_votes.push_back(votes[i]);
}
}
if (all_passed){
LOG("ALL votes PASSED salts check\n");
} else {
votes = new_votes;
}
}
uniqueVote.resize(0);
uniqueVote.push_back(votes[0]);
voteIndices.resize(1);
voteIndices[0].push_back(votes[0].computorIndex);
for (int i = 1; i < votes.size(); i++){
int vote_indice = -1;
for (int j = 0; j < uniqueVote.size(); j++){
if (compareVote(votes[i], uniqueVote[j])){
vote_indice = j;
break;
}
}
if (vote_indice != -1){
voteIndices[vote_indice].push_back(votes[i].computorIndex);
} else {
uniqueVote.push_back(votes[i]);
voteIndices.resize(voteIndices.size() + 1);
int M = voteIndices.size() -1;
voteIndices[M].resize(0);
voteIndices[M].push_back(votes[i].computorIndex);
}
}
}
void getQuorumTick(const char* nodeIp, const int nodePort, uint32_t requestedTick, const char* compFileName)
{
auto qc = std::make_shared<QubicConnection>(nodeIp, nodePort);
BroadcastComputors bc;
{
FILE* f = fopen(compFileName, "rb");
if (fread(&bc, 1, sizeof(BroadcastComputors), f) != sizeof(BroadcastComputors)){
LOG("Failed to read comp list\n");
fclose(f);
return;
}
fclose(f);
}
static struct
{
RequestResponseHeader header;
RequestedQuorumTick rqt;
} packet;
packet.header.setSize(sizeof(packet));
packet.header.randomizeDejavu();
packet.header.setType(RequestedQuorumTick::type); // REQUEST_TICK_DATA
packet.rqt.tick = requestedTick;
memset(packet.rqt.voteFlags, 0, (676 + 7) / 8);
qc->sendData(reinterpret_cast<uint8_t *>(&packet), sizeof(packet));
auto votes = qc->getLatestVectorPacketAs<Tick>();
LOG("Received %d quorum tick #%u (votes)\n", votes.size(), requestedTick);
packet.rqt.tick = requestedTick+1;
memset(packet.rqt.voteFlags, 0, (676 + 7) / 8);
qc->sendData(reinterpret_cast<uint8_t *>(&packet), sizeof(packet));
auto votes_next = qc->getLatestVectorPacketAs<Tick>();
LOG("Received %d quorum tick #%u (votes)\n", votes_next.size(), requestedTick+1);
int N = votes.size();
if (N == 0){
return;
}
for (int i = 0; i < N; i++){
uint8_t digest[64] = {0};
votes[i].computorIndex ^= Tick::type();
KangarooTwelve((uint8_t*)&votes[i], sizeof(Tick) - SIGNATURE_SIZE, digest, 32);
votes[i].computorIndex ^= Tick::type();
int comp_index = votes[i].computorIndex;
if (!verify(bc.computors.publicKeys[comp_index], digest, votes[i].signature)){
LOG("Signature of vote %d is not correct\n", i);
dumpQuorumTick(votes[i]);
return;
}
}
std::vector<Tick> uniqueVote, uniqueVoteNext;
std::vector<std::vector<int>> voteIndices, voteIndicesNext;
getUniqueVotes(votes_next, uniqueVoteNext, voteIndicesNext, N);
if (votes_next.size() < 451)
{
printf("Failed to get votes for tick %d, this will not perform salt check\n", requestedTick+1);
getUniqueVotes(votes, uniqueVote, voteIndices, N);
}
else
{
int max_id = 0;
for (int i = 1; i < uniqueVote.size(); i++){
if (voteIndicesNext[max_id].size() < voteIndicesNext[i].size()){
max_id = i;
}
}
auto vote_next = uniqueVoteNext[max_id];
getUniqueVotes(votes, uniqueVote, voteIndices, N, true, &bc,
vote_next.prevResourceTestingDigest,
vote_next.prevSpectrumDigest,
vote_next.prevUniverseDigest,
vote_next.prevComputerDigest);
}
LOG("Number of unique votes: %d\n", uniqueVote.size());
for (int i = 0; i < uniqueVote.size(); i++){
LOG("Vote #%d (voted by %d computors ID) ", i, voteIndices[i].size());
const bool dumpComputorIndex = false;
dumpQuorumTick(uniqueVote[i], dumpComputorIndex);
LOG("Voted by: ");
std::sort(voteIndices[i].begin(), voteIndices[i].end());
for (int j = 0; j < voteIndices[i].size(); j++){
int index = voteIndices[i][j];
auto alphabet = indexToAlphabet(index);
if (j < voteIndices[i].size() - 1){
LOG("%d(%s), ", index, alphabet.c_str());
} else {
LOG("%d(%s)\n", index, alphabet.c_str());
}
}
}
}
void getTickDataToFile(const char* nodeIp, const int nodePort, uint32_t requestedTick, const char* fileName)
{
auto qc = std::make_shared<QubicConnection>(nodeIp, nodePort);
uint32_t currenTick = getTickNumberFromNode(qc);
if (currenTick < requestedTick)
{
LOG("Please wait a bit more. Requested tick %u, current tick %u\n", requestedTick, currenTick);
return;
}
TickData td;
getTickData(nodeIp, nodePort, requestedTick, td);
if (td.epoch == 0)
{
LOG("Tick %u is empty\n", requestedTick);
return;
}
int numTx = 0;
uint8_t all_zero[32] = {0};
for (int i = 0; i < NUMBER_OF_TRANSACTIONS_PER_TICK; i++){
if (memcmp(all_zero, td.transactionDigests[i], 32) != 0) numTx++;
}
std::vector<Transaction> txs;
std::vector<extraDataStruct> extraData;
std::vector<SignatureStruct> signatures;
getTickTransactions(qc.get(), requestedTick, numTx, txs, nullptr, &extraData, &signatures);
FILE* f = fopen(fileName, "wb");
fwrite(&td, 1, sizeof(TickData), f);
for (int i = 0; i < txs.size(); i++)
{
fwrite(&txs[i], 1, sizeof(Transaction), f);
int extraDataSize = txs[i].inputSize;
if (extraDataSize != 0){
fwrite(extraData[i].vecU8.data(), 1, extraDataSize, f);
}
fwrite(signatures[i].sig, 1, SIGNATURE_SIZE, f);
}
fclose(f);
LOG("Tick data and tick transactions have been written to %s\n", fileName);
}
void readTickDataFromFile(const char* fileName, TickData& td,
std::vector<Transaction>& txs,
std::vector<extraDataStruct>* extraData,
std::vector<SignatureStruct>* signatures,
std::vector<TxhashStruct>* txHashes)
{
uint8_t extraDataBuffer[1024] = {0};
uint8_t signatureBuffer[128] = {0};
char txHashBuffer[128] = {0};
uint8_t digest[32] = {0};
FILE* f = fopen(fileName, "rb");
fread(&td, 1, sizeof(TickData), f);
int numTx = 0;
uint8_t all_zero[32] = {0};
for (int i = 0; i < NUMBER_OF_TRANSACTIONS_PER_TICK; i++){
if (memcmp(all_zero, td.transactionDigests[i], 32) != 0) numTx++;
}
for (int i = 0; i < numTx; i++){
Transaction tx;
fread(&tx, 1, sizeof(Transaction), f);
int extraDataSize = tx.inputSize;
if (extraData != nullptr){
extraDataStruct eds;
if (extraDataSize != 0){
fread(extraDataBuffer, 1, extraDataSize, f);
eds.vecU8.resize(extraDataSize);
memcpy(eds.vecU8.data(), extraDataBuffer, extraDataSize);
}
extraData->push_back(eds);
}
fread(signatureBuffer, 1, SIGNATURE_SIZE, f);
if (signatures != nullptr){
SignatureStruct sig;
memcpy(sig.sig, signatureBuffer, SIGNATURE_SIZE);
signatures->push_back(sig);
}
if (txHashes != nullptr){
std::vector<uint8_t> raw_data;
raw_data.resize(sizeof(Transaction) + tx.inputSize + SIGNATURE_SIZE);
auto ptr = raw_data.data();
memcpy(ptr, &tx, sizeof(Transaction));
memcpy(ptr + sizeof(Transaction), extraDataBuffer, tx.inputSize);
memcpy(ptr + sizeof(Transaction) + tx.inputSize, signatureBuffer, SIGNATURE_SIZE);
KangarooTwelve(ptr,
raw_data.size(),
digest,
32);
TxhashStruct tx_hash;
getTxHashFromDigest(digest, txHashBuffer);
memcpy(tx_hash.hash, txHashBuffer, 60);
txHashes->push_back(tx_hash);
}
txs.push_back(tx);
}
fclose(f);
}
BroadcastComputors readComputorListFromFile(const char* fileName);
void printTickDataFromFile(const char* fileName, const char* compFile)
{
TickData td;
std::vector<Transaction> txs;
std::vector<extraDataStruct> extraData;
std::vector<SignatureStruct> signatures;
std::vector<TxhashStruct> txHashes;
uint8_t digest[32];
readTickDataFromFile(fileName, td, txs, &extraData, &signatures, &txHashes);
//verifying everything
BroadcastComputors bc;
bc = readComputorListFromFile(compFile);
if (bc.computors.epoch != td.epoch){
LOG("Computor list epoch (%u) and tick data epoch (%u) are not matched\n", bc.computors.epoch, td.epoch);
}
int computorIndex = td.computorIndex;
td.computorIndex ^= BROADCAST_FUTURE_TICK_DATA;
KangarooTwelve(reinterpret_cast<const uint8_t *>(&td),
sizeof(TickData) - SIGNATURE_SIZE,
digest,
32);
uint8_t* computorOfThisTick = bc.computors.publicKeys[computorIndex];
if (verify(computorOfThisTick, digest, td.signature)){
LOG("Tick is VERIFIED (signed by correct computor).\n");
} else {
LOG("Tick is NOT verified (not signed by correct computor).\n");
}
LOG("Epoch: %u\n", td.epoch);
LOG("Tick: %u\n", td.tick);
LOG("Computor index: %u\n", computorIndex);
LOG("Datetime: %u-%u-%u %u:%u:%u.%u\n", td.day, td.month, td.year, td.hour, td.minute, td.second, td.millisecond);
for (int i = 0; i < txs.size(); i++)
{
uint8_t* extraDataPtr = extraData[i].vecU8.empty() ? nullptr : extraData[i].vecU8.data();
printReceipt(txs[i], txHashes[i].hash, extraDataPtr);
if (verifyTx(txs[i], extraData[i].vecU8.data(), signatures[i].sig))
{
LOG("Transaction is VERIFIED\n");
} else {
LOG("Transaction is NOT VERIFIED. Incorrect signature\n");
}
}
}
bool checkTxOnFile(const char* txHash, const char* fileName)
{
TickData td;
std::vector<Transaction> txs;
std::vector<extraDataStruct> extraData;
std::vector<SignatureStruct> signatures;
std::vector<TxhashStruct> txHashes;
readTickDataFromFile(fileName, td, txs, &extraData, &signatures, &txHashes);
for (int i = 0; i < txs.size(); i++)
{
if (memcmp(txHashes[i].hash, txHash, 60) == 0){
LOG("Found tx %s on file %s\n", txHash, fileName);
printReceipt(txs[i], txHash, extraData[i].vecU8.data());
return true;
}
}
LOG("Can NOT find tx %s on file %s\n", txHash, fileName);
return false;
}
void sendRawPacket(const char* nodeIp, const int nodePort, int rawPacketSize, uint8_t* rawPacket)
{
std::vector<uint8_t> buffer;
auto qc = make_qc(nodeIp, nodePort);
qc->sendData(rawPacket, rawPacketSize);
LOG("Sent %d bytes\n", rawPacketSize);
qc->receiveDataAll(buffer);
LOG("Received %d bytes\n", buffer.size());
for (int i = 0; i < buffer.size(); i++){
LOG("%02x", buffer[i]);
}
LOG("\n");
}
void sendSpecialCommand(const char* nodeIp, const int nodePort, const char* seed, int command)
{
uint8_t privateKey[32] = {0};
uint8_t sourcePublicKey[32] = {0};
uint8_t subseed[32] = {0};
uint8_t digest[32] = {0};
uint8_t signature[64] = {0};
struct {
RequestResponseHeader header;
SpecialCommand cmd;
uint8_t signature[64];
} packet;
packet.header.setSize(sizeof(packet));
packet.header.randomizeDejavu();
packet.header.setType(PROCESS_SPECIAL_COMMAND);
uint64_t curTime = time(NULL);
uint64_t commandByte = (uint64_t)(command) << 56;
packet.cmd.everIncreasingNonceAndCommandType = commandByte | curTime;
getSubseedFromSeed((uint8_t*)seed, subseed);
getPrivateKeyFromSubSeed(subseed, privateKey);
getPublicKeyFromPrivateKey(privateKey, sourcePublicKey);
KangarooTwelve((unsigned char*)&packet.cmd,
sizeof(packet.cmd),
digest,
32);
sign(subseed, sourcePublicKey, digest, signature);
memcpy(packet.signature, signature, 64);
auto qc = make_qc(nodeIp, nodePort);
qc->sendData((uint8_t *) &packet, packet.header.size());
auto response = qc->receivePacketAs<SpecialCommand>();
if (response.everIncreasingNonceAndCommandType == packet.cmd.everIncreasingNonceAndCommandType){
LOG("Node received special command\n");
} else{
if (command != SPECIAL_COMMAND_REFRESH_PEER_LIST){
LOG("Failed to send special command\n");
} else {
LOG("Sent special command\n"); // the connection is refreshed right after this command, no way to verify remotely
}
}
}
void toogleMainAux(const char* nodeIp, const int nodePort, const char* seed,
int command, std::string mode0, std::string mode1)
{
uint8_t privateKey[32] = {0};
uint8_t sourcePublicKey[32] = {0};
uint8_t subseed[32] = {0};
uint8_t digest[32] = {0};
uint8_t signature[64] = {0};
struct {
RequestResponseHeader header;
SpecialCommandToggleMainModeResquestAndResponse cmd;
uint8_t signature[64];
} packet;
packet.header.setSize(sizeof(packet));
packet.header.randomizeDejavu();
packet.header.setType(PROCESS_SPECIAL_COMMAND);
uint64_t curTime = time(NULL);
uint64_t commandByte = (uint64_t)(command) << 56;
packet.cmd.everIncreasingNonceAndCommandType = commandByte | curTime;
uint8_t flag = 0;
if (mode0 == "MAIN") flag |= 1;
if (mode1 == "MAIN") flag |= 2;
packet.cmd.mainModeFlag = flag;
memset(packet.cmd.padding, 0, 7);
getSubseedFromSeed((uint8_t*)seed, subseed);
getPrivateKeyFromSubSeed(subseed, privateKey);
getPublicKeyFromPrivateKey(privateKey, sourcePublicKey);
KangarooTwelve((unsigned char*)&packet.cmd,
sizeof(packet.cmd),
digest,
32);
sign(subseed, sourcePublicKey, digest, signature);
memcpy(packet.signature, signature, 64);
auto qc = make_qc(nodeIp, nodePort);
qc->sendData((uint8_t *) &packet, packet.header.size());
auto response = qc->receivePacketAs<SpecialCommandToggleMainModeResquestAndResponse>();
if (response.everIncreasingNonceAndCommandType == packet.cmd.everIncreasingNonceAndCommandType){
if (response.mainModeFlag == packet.cmd.mainModeFlag){
LOG("Successfully set MAINAUX flag\n");
} else {
LOG("The packet is successfully sent but failed set MAINAUX flag\n");
}
} else{
LOG("Failed set MAINAUX flag\n");
}
}
void setSolutionThreshold(const char* nodeIp, const int nodePort, const char* seed,
int command, int epoch, int threshold)
{
uint8_t privateKey[32] = {0};
uint8_t sourcePublicKey[32] = {0};
uint8_t subseed[32] = {0};
uint8_t digest[32] = {0};
uint8_t signature[64] = {0};
struct {
RequestResponseHeader header;
SpecialCommandSetSolutionThresholdResquestAndResponse cmd;
uint8_t signature[64];
} packet;
packet.header.setSize(sizeof(packet));
packet.header.randomizeDejavu();
packet.header.setType(PROCESS_SPECIAL_COMMAND);
uint64_t curTime = time(NULL);
uint64_t commandByte = (uint64_t)(command) << 56;
packet.cmd.everIncreasingNonceAndCommandType = commandByte | curTime;
packet.cmd.epoch = epoch;
packet.cmd.threshold = threshold;
getSubseedFromSeed((uint8_t*)seed, subseed);
getPrivateKeyFromSubSeed(subseed, privateKey);
getPublicKeyFromPrivateKey(privateKey, sourcePublicKey);
KangarooTwelve((unsigned char*)&packet.cmd,
sizeof(packet.cmd),
digest,
32);
sign(subseed, sourcePublicKey, digest, signature);
memcpy(packet.signature, signature, 64);
auto qc = make_qc(nodeIp, nodePort);
qc->sendData((uint8_t *) &packet, packet.header.size());
auto response = qc->receivePacketAs<SpecialCommandSetSolutionThresholdResquestAndResponse>();
if (response.everIncreasingNonceAndCommandType == packet.cmd.everIncreasingNonceAndCommandType){
if (response.epoch == packet.cmd.epoch && response.threshold == packet.cmd.threshold){
LOG("Successfully set solution threshold\n");
} else {
LOG("The packet is successfully sent but failed set solution threshold\n");
}
} else{
LOG("Failed set solution threshold\n");
}
}
void logTime(const UtcTime& time)
{
LOG("%u-%02u-%02u %02u:%02u:%02u.%09u", time.year, time.month, time.day, time.hour, time.minute, time.second, time.nanosecond);
}
UtcTime convertTime(std::chrono::system_clock::time_point time)
{
using namespace std;
using namespace std::chrono;
time_t tt = system_clock::to_time_t(time);
tm utc_tm = *gmtime(&tt);
UtcTime utcTime;
utcTime.year = utc_tm.tm_year + 1900;
utcTime.month = utc_tm.tm_mon + 1;
utcTime.day = utc_tm.tm_mday;
utcTime.hour = utc_tm.tm_hour;
utcTime.minute = utc_tm.tm_min;
utcTime.second = utc_tm.tm_sec;
// get nanoseconds
typedef duration<int, ratio_multiply<hours::period, ratio<24> >::type> days;
system_clock::duration tp = time.time_since_epoch();
days d = duration_cast<days>(tp);
tp -= d;
hours h = duration_cast<hours>(tp);
tp -= h;
minutes m = duration_cast<minutes>(tp);
tp -= m;
seconds s = duration_cast<seconds>(tp);
tp -= s;
utcTime.nanosecond = duration_cast<nanoseconds>(tp).count();
return utcTime;
}
void syncTime(const char* nodeIp, const int nodePort, const char* seed)
{
uint8_t privateKey[32] = { 0 };
uint8_t sourcePublicKey[32] = { 0 };
uint8_t subseed[32] = { 0 };
uint8_t digest[32] = { 0 };
uint8_t signature[64] = { 0 };
getSubseedFromSeed((uint8_t*)seed, subseed);
getPrivateKeyFromSubSeed(subseed, privateKey);
getPublicKeyFromPrivateKey(privateKey, sourcePublicKey);
LOG("---------------------------------------------------------------------------------\n");
LOG("This sets the node clock to roughly be in sync with the local clock.\n");
LOG("CAUTION: MAKE SURE THAT YOUR LOCAL CLOCK IS SET CORRECTLY, FOR EXAMPLE USING NTP.\n");
LOG("---------------------------------------------------------------------------------\n\n");
// get time from node and measure round trip time
unsigned long long roundTripTimeNanosec = 0;
{
LOG("Querying node time ...\n\n");
struct {
RequestResponseHeader header;
SpecialCommand cmd;
uint8_t signature[64];
} queryTimeMsg;
queryTimeMsg.header.setSize(sizeof(queryTimeMsg));
queryTimeMsg.header.randomizeDejavu();
queryTimeMsg.header.setType(PROCESS_SPECIAL_COMMAND);
uint64_t curTime = time(NULL);
uint64_t commandByte = (uint64_t)(SPECIAL_COMMAND_QUERY_TIME) << 56;
queryTimeMsg.cmd.everIncreasingNonceAndCommandType = commandByte | curTime;
KangarooTwelve((unsigned char*)&queryTimeMsg.cmd,
sizeof(queryTimeMsg.cmd),
digest,
32);
sign(subseed, sourcePublicKey, digest, signature);
memcpy(queryTimeMsg.signature, signature, 64);
auto qc = make_qc(nodeIp, nodePort);
auto startTime = std::chrono::steady_clock::now();
qc->sendData((uint8_t*)&queryTimeMsg, queryTimeMsg.header.size());
auto response = qc->receivePacketAs<SpecialCommandSendTime>();
auto endTime = std::chrono::steady_clock::now();
auto nowLocal = std::chrono::system_clock::now();
if ((response.everIncreasingNonceAndCommandType & 0xFFFFFFFFFFFFFF) != (queryTimeMsg.cmd.everIncreasingNonceAndCommandType & 0xFFFFFFFFFFFFFF)) {
LOG("Failed to query node time!\n");
return;
}
roundTripTimeNanosec = std::chrono::duration<unsigned long long, std::nano>(endTime - startTime).count();
LOG("Clock status before sync:\n");
LOG("\tNode time (UTC): "); logTime(response.utcTime); LOG(" - round trip time %llu ms\n", roundTripTimeNanosec / 1000000);
LOG("\tLocal time (UTC): "); logTime(convertTime(nowLocal)); LOG("\n\n");
}
if (roundTripTimeNanosec > 3000000000llu)
{
LOG("Round trip time is too large. Sync skipped, because it would be very inaccurate!");
return;
}
// set node clock to local UTC time + half round trip time (not very accurate but simple and sufficient for requirements of 5 seconds)
{
struct {
RequestResponseHeader header;
SpecialCommandSendTime cmd;
uint8_t signature[64];
} sendTimeMsg;
sendTimeMsg.header.setSize(sizeof(sendTimeMsg));
sendTimeMsg.header.randomizeDejavu();
sendTimeMsg.header.setType(PROCESS_SPECIAL_COMMAND);
uint64_t curTime = time(NULL);
uint64_t commandByte = (uint64_t)(SPECIAL_COMMAND_SEND_TIME) << 56;
sendTimeMsg.cmd.everIncreasingNonceAndCommandType = commandByte | curTime;
using namespace std::chrono;
auto now = system_clock::now();
auto halfRoudTripTime = duration_cast<system_clock::duration>(nanoseconds(roundTripTimeNanosec / 2));
UtcTime timeToSet = convertTime(now + halfRoudTripTime);
sendTimeMsg.cmd.utcTime = timeToSet;
LOG("Setting node time to "); logTime(timeToSet); LOG(" ...\n\n");
KangarooTwelve((unsigned char*)&sendTimeMsg.cmd,
sizeof(sendTimeMsg.cmd),
digest,