forked from lgcrego/Dynemol
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CSDM_master.f
347 lines (276 loc) · 8.71 KB
/
CSDM_master.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
! Program for computing Ehrenfest forces from Huckel Hamiltonian with Coherent-Switch-Decay-of-Mixing
module CSDM_Master
use MPI
use f95_precision
use blas95
use lapack95
use type_m
use constants_m
use parameters_m , only: rnd_seed
use MD_read_m , only: atom
use Structure_Builder , only: Unit_Cell
use MPI_definitions_m , only: KernelComm
public :: Ehrenfest_Master , PST , dNA_El , dNA_Hl , NewPointerState
private
!module variables ...
integer :: dim_N , dim_E , PST(2)
real*8 , allocatable , dimension(:,:) :: tmp_El, tmp_Hl
type(d_NA_vector) , allocatable , dimension(:,:) :: dNA_El, dNA_Hl
real*8 , allocatable , dimension(:,:,:) :: tmp_El_xyz , tmp_Hl_xyz
!module parameters ...
logical , parameter :: T_ = .true. , F_ = .false.
contains
!
!
!
!==================================================
subroutine Ehrenfest_Master( system , size_basis )
!==================================================
implicit none
type(structure) , intent(inout) :: system
integer , intent(in) :: size_basis
! local variables ...
real*8 , allocatable :: Force(:) , Force_xyz(:,:)
integer :: i , j , xyz , err
integer :: mpi_D_R = mpi_double_precision
integer :: displs(4) , recv_counts(4)
dim_E = size_basis
CALL preprocess( system )
displs = system%atoms * [ 0 , 0 , 1 , 2 ]
recv_counts = system%atoms * [ 0 , 1 , 1 , 1 ]
allocate( Force(0) )
allocate( Force_xyz(system%atoms,3) , source = D_zero )
CALL MPI_GatherV( Force , 0 , mpi_D_R , Force_xyz , recv_counts , displs , mpi_D_R , 0 , KernelComm , err )
do concurrent ( xyz=1:3 , i=1:system% atoms )
atom(i)% Ehrenfest(xyz) = Force_xyz(i,xyz)
end do
deallocate( Force_xyz )
displs = dim_N*dim_E * [0 , 0 , 1 , 2 ]
recv_counts = dim_N*dim_E * [0 , 1 , 1 , 1 ]
CALL MPI_GatherV( tmp_El , 0 , mpi_D_R , tmp_El_xyz , recv_counts , displs , mpi_D_R , 0 , KernelComm , err )
CALL MPI_GatherV( tmp_Hl , 0 , mpi_D_R , tmp_Hl_xyz , recv_counts , displs , mpi_D_R , 0 , KernelComm , err )
do xyz=1,3
do j=1,dim_E
do i=1,dim_N
dNA_El(i,j)%vec(xyz) = tmp_El_xyz(i,j,xyz)
dNA_Hl(i,j)%vec(xyz) = tmp_Hl_xyz(i,j,xyz)
end do
end do
end do
deallocate( tmp_El_xyz , tmp_Hl_xyz )
deallocate( Force , tmp_El , tmp_Hl )
include 'formats.h'
end subroutine Ehrenfest_Master
!
!
!
!============================
subroutine preprocess( sys )
!============================
implicit none
type(structure) , intent(in) :: sys
! local variables ...
integer :: i , j
logical , save :: first_time = .true.
dim_N = count( sys%QMMM == "QM" .AND. sys%flex == T_ )
allocate( tmp_El (0,0) )
allocate( tmp_Hl (0,0) )
allocate( tmp_El_xyz (dim_N,dim_E,3) , source = d_zero )
allocate( tmp_Hl_xyz (dim_N,dim_E,3) , source = d_zero )
if( first_time ) then
allocate( dNA_El (dim_N,dim_E) )
allocate( dNA_Hl (dim_N,dim_E) )
do concurrent( i=1:dim_N , j=1:dim_E )
dNA_El (i,j)% vec(:) = d_zero
dNA_Hl (i,j)% vec(:) = d_zero
enddo
CALL init_random_seed()
first_time = F_
end if
end subroutine Preprocess
!
!
!
!
!==============================================================
subroutine NewPointerState( system , bra , ket , QM , t_rate )
!==============================================================
implicit none
! args
type(structure), intent(in):: system
complex*16 , intent(in):: bra(:,:)
complex*16 , intent(in):: ket(:,:)
type(R_eigen) , intent(in):: QM
real*8 , intent(in):: t_rate
! local variables ...
integer :: i , j , Fermi , newPST(2)
real*8 :: rn , EH_jump
real*8, allocatable :: rho(:,:) , base(:,:) , P_switch(:,:) , B_kl(:,:) , Omega(:,:)
character(len=7) :: method
Fermi = QM%Fermi_state
allocate( rho(dim_E, 2) )
! this loop: Symm. Re(rho_ij)/rho_ii, j=1(el), 2(hl) ...
do j = 1 , 2
rho(:,j) = real( ket(:,j)*bra(PST(j),j) + ket(PST(j),j)*bra(:,j) ) / TWO
rho(:,j) = rho(:,j) / rho( PST(j) , j )
enddo
!============================================
! choose method = "Dynemol" or "Tully" ...
method = "Dynemol"
!============================================
! both methods are equivalent ...
allocate(P_switch(dim_E,2))
if ( method == "Dynemol" ) then
call Dynemol_way(QM,Omega)
P_switch(:,:) = two * rho * Omega
deallocate(Omega)
else
call Tully_way( system , rho , B_kl )
forall( j=1:2 ) P_switch(:,j) = t_rate * B_kl(:,j)
deallocate(B_kl)
end if
!============================================
call random_number(rn)
newPST = PST
allocate( base(0:dim_E,2) , source=d_zero )
base(0,:) = d_zero
do j = 1 , 2
do i = 1 , dim_E
base(i,j) = base(i-1,j) + max(d_Zero,P_switch(i,j))
if( rn > base(i-1,j) .AND. rn <= base(i,j) ) then
newPST(j) = i
exit
end if
end do
end do
EH_jump = (QM%erg(newPST(1)) - QM%erg(PST(1))) - (QM%erg(newPST(2)) - QM%erg(PST(2)))
if( EH_jump > Unit_Cell% MD_Kin ) then
!transitions are not allowed ; energy forbidden
return
endif
if( newPST(1) > Fermi .AND. newPST(2) <= Fermi ) then
! do nothing, transitions are allowed
elseif( newPST(1) == newPST(2) ) then
! electron/hole annihilation
! system returns to GS
newPST(1:2) = Fermi
elseif( (newPST(1) == PST(2)) .AND. (newPST(2) == PST(1)) ) then
! electron/hole exchange transition
! system returns to GS
newPST(1:2) = Fermi
else
! transitions not allowed
newPST = PST
endif
If( newPST(1) < newPST(2) ) then
CALL warning("ATTENTION: electron below hole state")
stop
end If
deallocate( rho , base , P_switch )
PST = newPST
end subroutine NewPointerState
!
!
!
!====================================
subroutine Dynemol_way( QM , Omega )
!====================================
implicit none
type(R_eigen) , intent(in) :: QM
real*8 , allocatable , intent(out) :: Omega(:,:)
! local variables ...
integer :: i , j
real*8 , allocatable :: newQ(:,:)
logical :: flip
!local saved variables ...
logical , save :: done = F_
real*8 , allocatable , save :: pastQ(:,:)
allocate( newQ (dim_E,2) )
allocate( Omega (dim_E,2) )
if( .not. done ) then
! setup environment ...
allocate( pastQ (dim_E,dim_E) )
pastQ = QM%R
done = T_
else
! used to calculate P_switch via Scattering Matrix (Omega): DynEMol method ...
do i = 1 , dim_E
flip = dot_product( QM%L(i,:) , pastQ(:,i) ) < 0
if(flip) pastQ(:,i) = -pastQ(:,i)
end do
forall(j=1:2) newQ(:,j) = QM%L(PST(j),:)
call gemm( pastQ , newQ , Omega , 'T' )
!change sign for hole wvpckt ...
Omega(:,2) = -Omega(:,2)
do j=1,2
Omega(PST(j),j) = d_zero
end do
pastQ = QM%R
end if
deallocate( newQ )
end subroutine Dynemol_way
!
!
!
!===========================================
subroutine Tully_way( system , rho , B_kl )
!===========================================
implicit none
type(structure) , intent(in) :: system
real*8 , allocatable , intent(in) :: rho(:,:)
real*8 , allocatable , intent(out) :: B_kl(:,:)
! local parameters ...
real*8, parameter :: V_factor = 1.d-2 ! <== converts nuclear velocity: m/s (MM) to Ang/ps (QM)
!local variables ...
integer :: i , j , n
real*8, allocatable :: v_x_dNA(:,:)
!local saved variables ...
logical , save :: done = F_
real*8 , allocatable , save :: past_rho(:,:)
allocate( v_x_dNA (dim_E,2) , source = d_zero )
allocate( B_kl (dim_E,2) )
if( .not. done ) then
! setup environment ...
allocate( past_rho (dim_E,2) )
past_rho = rho
done = T_
else
do i = 1 , dim_E
do n = 1 , system%atoms
If( system%QMMM(n) == "MM" .OR. system%flex(n) == F_ ) cycle
v_x_dNA(i,1) = v_x_dNA(i,1) + dot_product( atom(n)% vel(:) , dNA_El(n,i)% vec(:) )
v_x_dNA(i,2) = v_x_dNA(i,2) - dot_product( atom(n)% vel(:) , dNA_Hl(n,i)% vec(:) )
end do
enddo
v_x_dNA = v_x_dNA * V_factor
forall( j=1:2 ) B_kl(:,j) = - two * past_rho(:,j) * v_x_dNA(:,j)
do j=1,2
B_kl(PST(j),j) = d_zero
end do
past_rho = rho
end if
deallocate( v_x_dNA )
end subroutine Tully_way
!
!
!
!
!==============================
subroutine init_random_seed ()
!==============================
implicit none
!local variables ...
integer :: seed(5)
seed = [10051965,27092004,2092002,22021967,-76571]
if( rnd_seed ) &
then
call random_seed()
else
call random_seed(put=seed(1:5))
endif
end subroutine init_random_seed
!
!
!
!
end module CSDM_Master