-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
96 lines (76 loc) · 3.28 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
import os
import os.path as osp
import numpy as np
import open3d as o3d
from tqdm import tqdm
from arguments import Arguments
from models.scarp import SCARP
def orthonormalize_basis(basis):
"""
Returns orthonormal basis vectors
basis - B, 3, 3
out - B, 3, 3
"""
u, s, v = torch.svd(basis)
out = u @ v.transpose(-2, -1)
return out
def return_rotated_pcd(basis, shape_comp):
"""
Returns the pointcloud in the original pose by
basis: B x 3 x 3
shape_comp: B x N x 3
returns: B x N x 3
"""
basis = torch.stack(basis, dim = 1)
orth_basis = orthonormalize_basis(basis)
orth_basis = orth_basis[0]
y_p = torch.einsum("bij, bpj->bpi", orth_basis, shape_comp)
y_p = torch.stack([y_p[..., 2], y_p[..., 0], y_p[..., 1]], dim = -1)
return y_p
if __name__ == '__main__':
# load arguments
args = Arguments(stage='demo').parser().parse_args()
args.device = torch.device('cuda:'+str(args.gpu) if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(args.device)
os.makedirs('./checkpoints',exist_ok=True)
load_ckpt = args.ckpt_load if args.ckpt_load is not None else None
assert load_ckpt != None, print('Invalid Checkpoint Path. Aborting.')
print(f"checkpoint is: {load_ckpt}")
# load model
model = SCARP(args)
checkpoint = torch.load(load_ckpt, map_location=args.device)
model.load_state_dict(checkpoint['model_state_dict'])
print("Checkpoint loaded.")
model = model.to(args.device)
model.eval()
# load input path
pcd_path = os.path.join(args.demo_dataset_path,args.class_choice)
with torch.no_grad():
for _iter,path in enumerate(tqdm(os.listdir(pcd_path),desc="Inference")):
if path.endswith('_output.pcd') or not path.endswith('_input.pcd'):
continue
# load input pointcloud
f = os.path.join(pcd_path,path)
pcd = o3d.io.read_point_cloud(f)
input_point_cloud = np.asarray(pcd.points).astype(np.float32)
input_point_cloud = torch.from_numpy(input_point_cloud).unsqueeze(dim=0).to(args.device)
# forward pass
output = model(input_point_cloud)
# get the pointcloud in the orginial pose
basis,canonical_pcd,translation = output['E'],output['pcd'], - output['T'][0]
rotated_pcd = return_rotated_pcd(basis,canonical_pcd)
output_pcd = rotated_pcd + translation
# save pointcloud
# output completed pcd
save_path = path.split('_')[0] + '_output.pcd'
save_path = os.path.join(pcd_path,save_path)
pcd.points = o3d.utility.Vector3dVector(output_pcd.squeeze(dim=0).cpu().numpy())
pcd.colors = o3d.utility.Vector3dVector(np.ones_like(pcd.points) * [0.5, 0.5, 0.5])
o3d.io.write_point_cloud(save_path,pcd)
#outputpcd combined with partial input pcd
save_path = path.split('_')[0] + '_combined.pcd'
save_path = os.path.join(pcd_path,save_path)
pcd2 = o3d.io.read_point_cloud(f)
pcd2.colors = o3d.utility.Vector3dVector(np.ones_like(pcd2.points) * [1, 0, 0])
o3d.io.write_point_cloud(save_path,pcd+pcd2)