-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
74 lines (62 loc) · 2.67 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from deepx.nn import *
from deepx.loss import *
from deepx.optimize import *
from tqdm import tqdm
from showdown_parser import ReplayDatabase, parse_log
from showdown_rl import Converter
def correct_poke(poke):
return poke.split(',')[0]
def predict(experience):
state, action, _, _ = experience
x = converter.encode_state(state)
probs = net.predict(x[None])[0]
predictions = probs.argsort()[::-1][:5]
print "Matchup: %s[%.2f] vs %s[%.2f]" % (correct_poke(state.get_primary(0).name),
state.get_health(0),
correct_poke(state.get_primary(1).name),
state.get_health(1))
print "My team: %s" % ', '.join(["%s[%.2f]" % (correct_poke(p.get_name()), p.health) for p in state.get_team(0)[1:]])
print "Their team: %s" % ', '.join(["%s[%.2f]" % (correct_poke(p.get_name()), p.health) for p in state.get_team(1)[1:]])
print
print "My action: %s" % experience[1]
print
for i, prediction in enumerate(predictions):
print "Prediction[%u]: " % i,
orig = prediction
if prediction >= converter.move_index:
prediction -= converter.move_index
print "Switch(%s) %.3f" % (converter.poke_backward_mapping[prediction], probs[orig])
else:
print "Move(%s) %.3f" % (converter.move_backward_mapping[prediction], probs[orig])
def train(iters, batch_size=200):
idx = np.arange(len(experiences))
avg_loss = None
exs = np.random.permutation(experiences)
for i in xrange(iters):
ix = np.random.choice(idx)
es = exs[ix: ix + batch_size]
X = np.stack([converter.encode_state(e[0]) for e in es], axis=0)
y = np.stack([converter.encode_action(e[1]) for e in es], axis=0)
loss = adam.train(X, y, 0.001)
if avg_loss is None:
avg_loss = loss
else:
avg_loss = avg_loss * 0.90 + 0.10 * loss
print "Loss[%u]: %.3f [%.3f]" % (i, loss, avg_loss)
if __name__ == "__main__":
r = ReplayDatabase('replays_all.db')
experiences = []
for id, replay_id, log in tqdm(r.get_replays(limit=50000)):
try:
for experience in parse_log(log):
experiences.append(experience)
except:
pass
# print "Failed on replay:", replay_id
# import traceback
# traceback.print_exc()
converter = Converter()
converter.learn_encodings(experiences)
experiences = np.array(experiences)
net = Vector(converter.get_input_dimension()) >> Repeat(Tanh(1000), 2) >> Softmax(converter.get_output_dimension())
adam = Adam(net >> CrossEntropy())