-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathCuckooHash.java
375 lines (331 loc) · 11.2 KB
/
CuckooHash.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/******************************************************************
*
* Vaughn Hartzell 001
*
* Note, additional comments provided throughout this source code
* is for educational purposes
*
********************************************************************/
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.lang.Math;
/**
* Cuckoo Hashing Exercise
*
* Cuckoo hashing is a scheme for resolving hash collisions of keys in
* a hashmap that maintains a worst-case constant lookup time, O(1).
* The name derives from the behavior of some species of cuckoo, where
* the cuckoo chick pushes the other eggs or young out of the nest when
* it hatches in a variation of the behavior referred to as brood
* parasitism; analogously, inserting a new key into a cuckoo hashing
* table may push an older key to a different location in the table.
*
* Constructor:
* CuckooHash( size ) - Where size is the initial bucket size
* of the hashmap
*
* Public Methods:
* int size() - The number of elements, <key,value> pairs,
* in the hashmap
* void clear() - Empty the hashmap.
* List<V> values() - Return a List of all values of type 'V' in
* the hashmap.
* Set<K> keys() - Return a Set of all keys of type 'K" in
* the hashmap.
* void put(K,V) - Insert the <key,value> pair of types K and V.
* V get(K) - Return the value of type V for the key
* provided of type K.
* boolean remove(K, V) - Remove <key, value> pair, return true
* if found and removed, else false.
* String printTable() - Return a String representing a
* concatenation of all <key,value> pairs.
*/
@SuppressWarnings("unchecked")
public class CuckooHash<K, V> {
private int CAPACITY; // Hashmap capacity
private Bucket<K, V>[] table; // Hashmap table
private int a = 37, b = 17; // Constants used in h2(key)
/**
* Class Bucket
*
* Inner bucket class which represents a <key,value> pair
* within the hash map.
*
* @param <K> - type of key
* @param <V> - type of value
*/
private class Bucket<K, V> {
private K bucKey = null;
private V value = null;
public Bucket(K k, V v) {
bucKey = k;
value = v;
}
/*
* Getters and Setters
*/
private K getBucKey() {
return bucKey;
}
private V getValue() { return value; }
}
/*
* Hash functions, hash1 and hash2
*/
private int hash1(K key) { return Math.abs(key.hashCode()) % CAPACITY; }
private int hash2(K key) { return (a * b + Math.abs(key.hashCode())) % CAPACITY; }
/**
* Method CuckooHash
*
* Constructor that initializes and sets the hashmap. A future
* optimization would to pass a load factor limit as a target in
* maintaining the hashmap before reaching the point where we have
* a cycle causing occurring loop.
*
* @param size user input multimap capacity
*/
public CuckooHash(int size) {
CAPACITY = size;
table = new Bucket[CAPACITY];
}
/**
* Method size
*
* Get the number of elements in the table; the time complexity is O(n).
*
* @return total key-value pairs
*/
public int size() {
int count = 0;
for (int i=0; i<CAPACITY; ++i) {
if (table[i] != null)
count++;
}
return count;
}
/**
* Method clear
*
* Removes all elements in the table, it does not rest the size of
* the hashmap. Optionally, we could reset the CAPACITY to its
* initial value when the object was instantiated.
*/
public void clear() {
table = new Bucket[CAPACITY];
}
public int mapSize() { return CAPACITY; } // used in external testing only
/**
* Method values
*
* Get a list containing of all values in the table
*
* @return the values as a list
*/
public List<V> values() {
List<V> allValues = new ArrayList<V>();
for (int i=0; i<CAPACITY; ++i) {
if (table[i] != null) {
allValues.add(table[i].getValue());
}
}
return allValues;
}
/**
* Method keys
*
* Get a set containing all the keys in the table
*
* @return a set of keys
*/
public Set<K> keys() {
Set<K> allKeys = new HashSet<K>();
for (int i=0; i<CAPACITY; ++i) {
if (table[i] != null) {
allKeys.add(table[i].getBucKey());
}
}
return allKeys;
}
/**
* Method put
*
* Adds a key-value pair to the table by means of cuckoo hashing.
* Each element can only be inserted into one of two bucket locations,
* defined by the two separate hash functions, h1(key) or h2(key).
* Each element's initial location will always be defined
* by h1(key). If later it is kicked out of that bucket location by
* another element insertion, it will move back and forth between those
* two hash locations (aka, bucket locations).
*
* On its initial invocation, this method places the passed <key,value>
* element at its h1(key) bucket location. If an element is already located
* at that bucket location, it will be kicked out and moved to its secondary
* location in order to make room for this initially inserted element. The
* secondary location is defined by the kicked out key's alternative hash
* function (aka, either h1(key) or h2(key), whichever is the one that moves
* to the alternate location.
*
* This process will continue in a loop as it moves kicked out
* elements to their alternate location (defined by h1(key) and h2(key))
* until either:
* (1) an empty bucket is found, or
* (2) we reach 'n' iterations, where 'n' is the bucket capacity
* of the hashmap (see HINT below on this method of cycle
* detection, the bucket capacity is held in variable 'CAPACITY').
*
* If we reach 'n' shuffles of elements being kicked out and moved to their
* secondary locations (leading to what appears to be a cycle), we will grow
* the hashmap and rehash (via method rehash()). After the rehash, we will
* need to re-invoke this method recursively, as we will have one element that
* was kicked out after the 'n' iteration that still needs to be inserted. Note,
* that it is possible when the bucket lists is small, that we may need to rehash
* twice to break a cycle. Again, this is done automatically when calling this
* method recursively.
*
* MAKE SURE YOU UNDERSTAND THE HINTS:
*
* HINT 1: To make sure you pass the provided tests in main, follow this rule:
* - Given a <key, value> via method's invocation, the bucket it
* determined by hashing the 'key'
* - Normally, we would not allow dupe keys, for our purposes here we
* WILL allow. What will be unique in this assignment's implementation
* is the <key,value> in the table. So when inserting a key that is
* already in the table, continue unless a dupe key has the same
* value as being inserted.
*
* The above is being done to make testing easy on causing cycles with minimal
* insertions into the hash table.
*
* HINT 2: For simplicity of this assignment, after shuffling elements between
* buckets 'n' times (where 'n' is defined by the value of variable 'CAPACITY',
* you can assume you are in an infinite cycle. This may not be true, but if
* growing the hash map when not in a cycle, this will not cause data integrity
* issues. BUT BE CLEAR IN PRACTICE, as we discussed in class, a better way to
* do this is to build a graph (one edge at a time) for each element shuffled
* (and edge being defined as with end-points of the two bucket locations for the
* moved element). This once a cycle is detected in this graph, which is by starting
* to traverse an existing edge in the graph, we have a cycle. However, we have not
* discussed graphs yet, they are at the end of the semester :-)
*
* @param key the key of the element to add
* @param value the value of the element to add
*/
public void put(K key, V value) {
// ADD YOUR CODE HERE - DO NOT FORGET TO ADD YOUR NAME AT TOP OF FILE.
// Also make sure you read this method's prologue above, it should help
// you. Especially the two HINTS in the prologue.
int pos=hash1(key); //first hash
Bucket<K,V> hold=new Bucket<>(key,value); //value holder
if (table[pos] != null && table[pos].getValue().equals(value)){
return;
}
for(int a=0;a<CAPACITY;a++){
if(table[pos]==null){
table[pos]=hold;
return;
} else {
// updated code so that I correctly update the bucket
Bucket<K,V> temp = table[pos];
table[pos]=hold;
hold=temp;
int idx = hash1(hold.getBucKey());
if (idx == pos) {
pos = hash2(hold.getBucKey());
} else {
pos = hash1(hold.getBucKey());
}
}
}
rehash();
put(hold.getBucKey(),hold.getValue());
}
/**
* Method get
*
* Retrieve a value in O(1) time based on the key because it can only
* be in 1 of 2 locations
*
* @param key Key to search for
* @return the found value or null if it doesn't exist
*/
public V get(K key) {
int pos1 = hash1(key);
int pos2 = hash2(key);
if (table[pos1] != null && table[pos1].getBucKey().equals(key))
return table[pos1].getValue();
else if (table[pos2] != null && table[pos2].getBucKey().equals(key))
return table[pos2].getValue();
return null;
}
/**
* Method remove
*
* Removes this key value pair from the table. Its time complexity
* is O(1) because the key can only be in 1 of 2 locations.
*
* @param key the key to remove
* @param value the value to remove
* @return successful removal
*/
public boolean remove(K key, V value) {
int pos1 = hash1(key);
int pos2 = hash2(key);
if (table[pos1] != null && table[pos1].getValue().equals(value)) {
table[pos1] = null;
return true;
}
else if (table[pos2] != null && table[pos2].getValue().equals(value)) {
table[pos2] = null;
return true;
}
return false;
}
/**
* Method printTable
*
* The method will prepare a String representation of the table of
* the format
* [ <k1, v1> <k2. v2> ... <kn, vn> ]
* where n is the number of <key, value> pairs.
*
* @return the table's contents as a String
*/
public String printTable() {
StringBuilder sb = new StringBuilder();
sb.append("[ ");
for (int i=0; i<CAPACITY; ++i) {
if (table[i] != null) {
sb.append("<");
sb.append(table[i].getBucKey()); //key
sb.append(", ");
sb.append(table[i].getValue()); //value
sb.append("> ");
}
}
sb.append("]");
return sb.toString();
}
/**
* Method rehash
*
* This method regrows the hashtable to capacity: 2*old capacity + 1
* and reinserts (rehashes) all the <key,value> pairs.
*
* This method invokes the 'put' method, so it is possible that
* another cycle is found when rehashing the hashmap. If this occurs,
* this function can be invoked recursively via the 'put' method.
*/
private void rehash() {
Bucket<K, V>[] tableCopy = table.clone();
int OLD_CAPACITY = CAPACITY;
CAPACITY = (CAPACITY * 2) + 1;
table = new Bucket[CAPACITY];
for (int i=0; i<OLD_CAPACITY; ++i) {
if (tableCopy[i] != null) {
put(tableCopy[i].getBucKey(), tableCopy[i].getValue());
}
}
}
}