forked from huggingface/candle
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.rs
154 lines (128 loc) · 4.62 KB
/
main.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Error as E;
use clap::{Parser, ValueEnum};
use candle::{DType, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::models::{trocr, vit};
use tokenizers::Tokenizer;
mod image_processor;
#[derive(Clone, Debug, Copy, ValueEnum)]
enum Which {
#[value(name = "base")]
BaseHandwritten,
#[value(name = "large")]
LargeHandwritten,
BasePrinted,
LargePrinted,
}
impl Which {
fn repo_and_branch_name(&self) -> (&str, &str) {
match self {
Self::BaseHandwritten => ("microsoft/trocr-base-handwritten", "refs/pr/3"),
Self::LargeHandwritten => ("microsoft/trocr-large-handwritten", "refs/pr/6"),
Self::BasePrinted => ("microsoft/trocr-base-printed", "refs/pr/7"),
Self::LargePrinted => ("microsoft/trocr-large-printed", "main"),
}
}
}
#[derive(Debug, Clone, serde::Deserialize)]
struct Config {
encoder: vit::Config,
decoder: trocr::TrOCRConfig,
}
#[derive(Parser, Debug)]
struct Args {
#[arg(long)]
model: Option<String>,
/// Choose the variant of the model to run.
#[arg(long, default_value = "base")]
which: Which,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// The image file to be processed.
#[arg(long)]
image: String,
/// Tokenization config.
#[arg(long)]
tokenizer: Option<String>,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let api = hf_hub::api::sync::Api::new()?;
let mut tokenizer_dec = {
let tokenizer_file = match args.tokenizer {
None => api
.model(String::from("ToluClassics/candle-trocr-tokenizer"))
.get("tokenizer.json")?,
Some(tokenizer) => std::path::PathBuf::from(tokenizer),
};
let tokenizer = Tokenizer::from_file(&tokenizer_file).map_err(E::msg)?;
TokenOutputStream::new(tokenizer)
};
let device = candle_examples::device(args.cpu)?;
let vb = {
let model = match args.model {
Some(model) => std::path::PathBuf::from(model),
None => {
let (repo, branch) = args.which.repo_and_branch_name();
api.repo(hf_hub::Repo::with_revision(
repo.to_string(),
hf_hub::RepoType::Model,
branch.to_string(),
))
.get("model.safetensors")?
}
};
println!("model: {:?}", model);
unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? }
};
let (encoder_config, decoder_config) = {
let (repo, branch) = args.which.repo_and_branch_name();
let config_filename = api
.repo(hf_hub::Repo::with_revision(
repo.to_string(),
hf_hub::RepoType::Model,
branch.to_string(),
))
.get("config.json")?;
let config: Config = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
(config.encoder, config.decoder)
};
let mut model = trocr::TrOCRModel::new(&encoder_config, &decoder_config, vb)?;
let processor_config = image_processor::ProcessorConfig::default();
let processor = image_processor::ViTImageProcessor::new(&processor_config);
let image = vec![args.image.as_str()];
let image = processor.preprocess(image)?;
let encoder_xs = model.encoder().forward(&image)?;
let mut logits_processor =
candle_transformers::generation::LogitsProcessor::new(1337, None, None);
let mut token_ids: Vec<u32> = vec![decoder_config.decoder_start_token_id];
for index in 0..1000 {
let context_size = if index >= 1 { 1 } else { token_ids.len() };
let start_pos = token_ids.len().saturating_sub(context_size);
let input_ids = Tensor::new(&token_ids[start_pos..], &device)?.unsqueeze(0)?;
let logits = model.decode(&input_ids, &encoder_xs, start_pos)?;
let logits = logits.squeeze(0)?;
let logits = logits.get(logits.dim(0)? - 1)?;
let token = logits_processor.sample(&logits)?;
token_ids.push(token);
if let Some(t) = tokenizer_dec.next_token(token)? {
use std::io::Write;
print!("{t}");
std::io::stdout().flush()?;
}
if token == decoder_config.eos_token_id {
break;
}
}
if let Some(rest) = tokenizer_dec.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
println!();
Ok(())
}