From a0442379d59f6737327e5103781e3856a5b5ef12 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gonzalo=20Tornar=C3=ADa?= Date: Wed, 22 Jan 2025 09:40:31 -0300 Subject: [PATCH] fix doctests for singular 4.4.1 --- src/doc/de/tutorial/interfaces.rst | 4 +- .../en/constructions/algebraic_geometry.rst | 18 +++--- src/doc/en/constructions/rings.rst | 4 +- src/doc/en/developer/coding_in_other.rst | 4 +- src/doc/en/tutorial/interfaces.rst | 4 +- src/doc/fr/tutorial/interfaces.rst | 4 +- src/doc/ja/tutorial/interfaces.rst | 4 +- src/doc/pt/tutorial/interfaces.rst | 4 +- src/doc/ru/tutorial/interfaces.rst | 4 +- src/sage/categories/pushout.py | 4 +- src/sage/interfaces/expect.py | 4 +- src/sage/interfaces/interface.py | 4 +- src/sage/interfaces/singular.py | 52 +++++++-------- src/sage/libs/singular/function.pyx | 4 +- src/sage/libs/singular/ring.pyx | 26 ++++---- .../multi_polynomial_libsingular.pyx | 64 +++++++++---------- src/sage/rings/polynomial/pbori/pbori.pyx | 4 +- .../polynomial/polynomial_quotient_ring.py | 4 +- .../polynomial_singular_interface.py | 52 +++++++-------- src/sage/rings/polynomial/term_order.py | 22 +++---- src/sage/rings/quotient_ring.py | 4 +- src/sage/rings/quotient_ring_element.py | 4 +- 22 files changed, 148 insertions(+), 150 deletions(-) diff --git a/src/doc/de/tutorial/interfaces.rst b/src/doc/de/tutorial/interfaces.rst index e02578af380..c1ce7d14df9 100644 --- a/src/doc/de/tutorial/interfaces.rst +++ b/src/doc/de/tutorial/interfaces.rst @@ -198,8 +198,8 @@ Sages Singular-Schnittstelle (ohne die ``....:``): sage: R1 = singular.ring(0, '(x,y)', 'dp') sage: R1 polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 2 + // coefficients: QQ... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C diff --git a/src/doc/en/constructions/algebraic_geometry.rst b/src/doc/en/constructions/algebraic_geometry.rst index 76b173d80a5..fea75431fbf 100644 --- a/src/doc/en/constructions/algebraic_geometry.rst +++ b/src/doc/en/constructions/algebraic_geometry.rst @@ -162,14 +162,12 @@ Other methods sage: singular.LIB("brnoeth.lib") sage: s = singular.ring(2,'(x,y)','lp') - ... sage: f = singular.poly('x3y+y3+x') - ... sage: klein1 = f.Adj_div(); print(klein1) [1]: [1]: - // coefficients: ZZ/2 - // number of vars : 2 + // coefficients: ZZ/2... + // number of vars : 2 // block 1 : ordering lp // : names x y // block 2 : ordering C @@ -191,14 +189,14 @@ Other methods sage: print(klein1) [1]: [1]: - // coefficients: ZZ/2 - // number of vars : 2 + // coefficients: ZZ/2... + // number of vars : 2 // block 1 : ordering lp // : names x y // block 2 : ordering C [2]: - // coefficients: ZZ/2 - // number of vars : 3 + // coefficients: ZZ/2... + // number of vars : 3 // block 1 : ordering lp // : names x y z // block 2 : ordering C @@ -214,8 +212,8 @@ Other methods [5]: [1]: [1]: - // coefficients: ZZ/2 - // number of vars : 3 + // coefficients: ZZ/2... + // number of vars : 3 // block 1 : ordering ls // : names x y t // block 2 : ordering C diff --git a/src/doc/en/constructions/rings.rst b/src/doc/en/constructions/rings.rst index 65557b229e1..d31684ccc77 100644 --- a/src/doc/en/constructions/rings.rst +++ b/src/doc/en/constructions/rings.rst @@ -57,8 +57,8 @@ Here's an example using the Singular interface: sage: I = singular.ideal(['a+b+c+d', 'ab+ad+bc+cd', 'abc+abd+acd+bcd', 'abcd-1']) sage: R polynomial ring, over a field, global ordering - // coefficients: ZZ/97 - // number of vars : 4 + // coefficients: ZZ/97... + // number of vars : 4 // block 1 : ordering lp // : names a b c d // block 2 : ordering C diff --git a/src/doc/en/developer/coding_in_other.rst b/src/doc/en/developer/coding_in_other.rst index 3410c9e6edc..d59886b5391 100644 --- a/src/doc/en/developer/coding_in_other.rst +++ b/src/doc/en/developer/coding_in_other.rst @@ -403,8 +403,8 @@ interface to Singular:: sage: singular.LIB("brnoeth.lib") sage: singular.ring(5,'(x,y)','lp') polynomial ring, over a field, global ordering - // coefficients: ZZ/5 - // number of vars : 2 + // coefficients: ZZ/5... + // number of vars : 2 // block 1 : ordering lp // : names x y // block 2 : ordering C diff --git a/src/doc/en/tutorial/interfaces.rst b/src/doc/en/tutorial/interfaces.rst index 543a74b7af7..16019427a34 100644 --- a/src/doc/en/tutorial/interfaces.rst +++ b/src/doc/en/tutorial/interfaces.rst @@ -195,8 +195,8 @@ Singular (do not type the ``....:``): sage: R1 = singular.ring(0, '(x,y)', 'dp') sage: R1 polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 2 + // coefficients: QQ... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C diff --git a/src/doc/fr/tutorial/interfaces.rst b/src/doc/fr/tutorial/interfaces.rst index 9b9da93519c..9f314601bf8 100644 --- a/src/doc/fr/tutorial/interfaces.rst +++ b/src/doc/fr/tutorial/interfaces.rst @@ -199,8 +199,8 @@ fournie par Sage (n'entrez pas les ``....:``) : sage: R1 = singular.ring(0, '(x,y)', 'dp') sage: R1 polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 2 + // coefficients: QQ... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C diff --git a/src/doc/ja/tutorial/interfaces.rst b/src/doc/ja/tutorial/interfaces.rst index 222eca889a1..4a93efa92f5 100644 --- a/src/doc/ja/tutorial/interfaces.rst +++ b/src/doc/ja/tutorial/interfaces.rst @@ -171,8 +171,8 @@ Singularは,グレブナー基底,多変数多項式のgcd,平面曲線の sage: R1 = singular.ring(0, '(x,y)', 'dp') sage: R1 polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 2 + // coefficients: QQ... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C diff --git a/src/doc/pt/tutorial/interfaces.rst b/src/doc/pt/tutorial/interfaces.rst index 0e3cac7b9d2..79388ef9d43 100644 --- a/src/doc/pt/tutorial/interfaces.rst +++ b/src/doc/pt/tutorial/interfaces.rst @@ -197,8 +197,8 @@ digite ``...``): sage: R1 = singular.ring(0, '(x,y)', 'dp') sage: R1 polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 2 + // coefficients: QQ... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C diff --git a/src/doc/ru/tutorial/interfaces.rst b/src/doc/ru/tutorial/interfaces.rst index 0bd8cf703aa..ab4850ca119 100644 --- a/src/doc/ru/tutorial/interfaces.rst +++ b/src/doc/ru/tutorial/interfaces.rst @@ -190,8 +190,8 @@ Singular предоставляет массивную и продуманную sage: R1 = singular.ring(0, '(x,y)', 'dp') sage: R1 polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 2 + // coefficients: QQ... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C diff --git a/src/sage/categories/pushout.py b/src/sage/categories/pushout.py index a2b5e910257..17f059f967f 100644 --- a/src/sage/categories/pushout.py +++ b/src/sage/categories/pushout.py @@ -3925,8 +3925,8 @@ class BlackBoxConstructionFunctor(ConstructionFunctor): sage: FS = BlackBoxConstructionFunctor(singular) sage: FS(QQ['t']) # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 1 + // coefficients: QQ... + // number of vars : 1 // block 1 : ordering lp // : names t // block 2 : ordering C diff --git a/src/sage/interfaces/expect.py b/src/sage/interfaces/expect.py index 91f8efcf651..ff424335d56 100644 --- a/src/sage/interfaces/expect.py +++ b/src/sage/interfaces/expect.py @@ -1328,8 +1328,8 @@ def _synchronize(self, cmd='1+%s;\n'): sage: R. = QQ[]; f = x^3 + x + 1; g = x^3 - x - 1; r = f.resultant(g); gap(ZZ); singular(R) Integers polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 1 + // coefficients: QQ... + // number of vars : 1 // block 1 : ordering lp // : names x // block 2 : ordering C diff --git a/src/sage/interfaces/interface.py b/src/sage/interfaces/interface.py index bd1095e8c70..22fb4b8487c 100644 --- a/src/sage/interfaces/interface.py +++ b/src/sage/interfaces/interface.py @@ -817,8 +817,8 @@ def __reduce__(self): sage: S = singular.ring(0, ('x')) sage: loads(dumps(S)) polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 1 + // coefficients: QQ... + // number of vars : 1 // block 1 : ordering lp // : names x // block 2 : ordering C diff --git a/src/sage/interfaces/singular.py b/src/sage/interfaces/singular.py index d110c17bf16..59d01f4493d 100644 --- a/src/sage/interfaces/singular.py +++ b/src/sage/interfaces/singular.py @@ -39,8 +39,8 @@ sage: R1 = singular.ring(0, '(x,y)', 'dp') sage: R1 polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 2 + // coefficients: QQ... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C @@ -220,12 +220,12 @@ sage: singular.lib('polylib.lib') sage: singular.ring(32003, '(a,b,c,d,e,f)', 'lp') - polynomial ring, over a field, global ordering - // coefficients: ZZ/32003 - // number of vars : 6 - // block 1 : ordering lp - // : names a b c d e f - // block 2 : ordering C + polynomial ring, over a field, global ordering + // coefficients: ZZ/32003... + // number of vars : 6 + // block 1 : ordering lp + // : names a b c d e f + // block 2 : ordering C sage: I = singular.ideal('cyclic(6)') sage: g = singular('groebner(I)') Traceback (most recent call last): @@ -1074,8 +1074,8 @@ def ring(self, char=0, vars='(x)', order='lp', check=None): sage: R = singular.ring(0, '(x,y,z)', 'dp') sage: R polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 3 + // coefficients: QQ... + // number of vars : 3 // block 1 : ordering dp // : names x y z // block 2 : ordering C @@ -1153,16 +1153,16 @@ def set_ring(self, R): sage: S = singular.ring('real', '(a,b)', 'lp') sage: singular.current_ring() polynomial ring, over a field, global ordering - // coefficients: Float() - // number of vars : 2 + // coefficients: Float()... + // number of vars : 2 // block 1 : ordering lp // : names a b // block 2 : ordering C sage: singular.set_ring(R) sage: singular.current_ring() polynomial ring, over a field, local ordering - // coefficients: ZZ/7 - // number of vars : 2 + // coefficients: ZZ/7... + // number of vars : 2 // block 1 : ordering ds // : names a b // block 2 : ordering C @@ -1203,15 +1203,15 @@ def current_ring(self): sage: r = PolynomialRing(GF(127),3,'xyz', order='invlex') sage: r._singular_() polynomial ring, over a field, global ordering - // coefficients: ZZ/127 - // number of vars : 3 + // coefficients: ZZ/127... + // number of vars : 3 // block 1 : ordering ip // : names x y z // block 2 : ordering C sage: singular.current_ring() polynomial ring, over a field, global ordering - // coefficients: ZZ/127 - // number of vars : 3 + // coefficients: ZZ/127... + // number of vars : 3 // block 1 : ordering ip // : names x y z // block 2 : ordering C @@ -1430,8 +1430,8 @@ def __copy__(self): sage: cpQ.set_ring() sage: cpQ polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 2 + // coefficients: QQ... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C @@ -1996,8 +1996,8 @@ def _sage_(self, R=None): sage: singular('basering') polynomial ring, over a domain, global ordering - // coefficients: ZZ - // number of vars : 3 + // coefficients: ZZ... + // number of vars : 3 // block 1 : ordering lp // : names x y z // block 2 : ordering C @@ -2087,16 +2087,16 @@ def set_ring(self): sage: S = singular.ring('real', '(a,b)', 'lp') sage: singular.current_ring() polynomial ring, over a field, global ordering - // coefficients: Float() - // number of vars : 2 + // coefficients: Float()... + // number of vars : 2 // block 1 : ordering lp // : names a b // block 2 : ordering C sage: R.set_ring() sage: singular.current_ring() polynomial ring, over a field, local ordering - // coefficients: ZZ/7 - // number of vars : 2 + // coefficients: ZZ/7... + // number of vars : 2 // block 1 : ordering ds // : names a b // block 2 : ordering C diff --git a/src/sage/libs/singular/function.pyx b/src/sage/libs/singular/function.pyx index 67cadf5d35c..87f0b7bab69 100644 --- a/src/sage/libs/singular/function.pyx +++ b/src/sage/libs/singular/function.pyx @@ -276,8 +276,8 @@ cdef class RingWrap: sage: l = ringlist(P) sage: ring = singular_function("ring") sage: ring(l, ring=P)._output() - // coefficients: QQ - // number of vars : 3 + // coefficients: QQ... + // number of vars : 3 // block 1 : ordering dp // : names x y z // block 2 : ordering C diff --git a/src/sage/libs/singular/ring.pyx b/src/sage/libs/singular/ring.pyx index 1d8dd844385..4f7e288e2ad 100644 --- a/src/sage/libs/singular/ring.pyx +++ b/src/sage/libs/singular/ring.pyx @@ -162,7 +162,7 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL: sage: sing_print = singular_function('print') sage: print(sing_print(R)) polynomial ring, over a field, global ordering - // coefficients: ZZ/7(a, b) + // coefficients: ZZ/7(a, b)... // number of vars : 3 // block 1 : ordering dp // : names x y z @@ -175,7 +175,7 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL: sage: from sage.libs.singular.function import singular_function sage: print(sing_print(R)) polynomial ring, over a field, global ordering - // coefficients: QQ(s, t) + // coefficients: QQ(s, t)... // number of vars : 3 // block 1 : ordering dp // : names x y z @@ -185,21 +185,21 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL: sage: R = PolynomialRing(GF(2), ("a", "b"), implementation="singular"); print(sing_print(R)) polynomial ring, over a field, global ordering - // coefficients: ZZ/2 + // coefficients: ZZ/2... // number of vars : 2 // block 1 : ordering dp // : names a b // block 2 : ordering C sage: R = PolynomialRing(GF(3), ("a", "b"), implementation="singular"); print(sing_print(R)) polynomial ring, over a field, global ordering - // coefficients: ZZ/3 + // coefficients: ZZ/3... // number of vars : 2 // block 1 : ordering dp // : names a b // block 2 : ordering C sage: R = PolynomialRing(GF(1000000007), ("a", "b"), implementation="singular"); print(sing_print(R)) polynomial ring, over a field, global ordering - // coefficients: ZZ/1000000007 + // coefficients: ZZ/1000000007... // number of vars : 2 // block 1 : ordering dp // : names a b @@ -210,14 +210,14 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL: sage: R = PolynomialRing(Zmod(2), ("a", "b"), implementation="singular"); print(sing_print(R)) polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/(2) + // coefficients: ZZ/(2)... // number of vars : 2 // block 1 : ordering dp // : names a b // block 2 : ordering C sage: R = PolynomialRing(Zmod(3), ("a", "b"), implementation="singular"); print(sing_print(R)) polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/(3) + // coefficients: ZZ/(3)... // number of vars : 2 // block 1 : ordering dp // : names a b @@ -227,7 +227,7 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL: sage: R = PolynomialRing(GF(2^128+51), ("a", "b"), implementation="singular"); print(sing_print(R)) polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/bigint(340282366920938463463374607431768211507) + // coefficients: ZZ/bigint(340282366920938463463374607431768211507)... // number of vars : 2 // block 1 : ordering dp // : names a b @@ -238,7 +238,7 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL: sage: R = PolynomialRing(GF(2^160), ("a", "b"), implementation="singular"); print(sing_print(R)) polynomial ring, over a field, global ordering - // coefficients: ZZ/2[z160]/(z160^160+z160^159+z160^155+z160^154+z160^153+z160^152+z160^151+z160^149+z160^148+z160^147+z160^146+z160^145+z160^144+z160^143+z160^141+z160^139+z160^137+z160^131+z160^129+z160^128+z160^127+z160^126+z160^123+z160^122+z160^121+z160^117+z160^116+z160^115+z160^113+z160^111+z160^110+z160^108+z160^106+z160^102+z160^100+z160^99+z160^97+z160^96+z160^95+z160^94+z160^93+z160^92+z160^91+z160^87+z160^86+z160^82+z160^80+z160^79+z160^78+z160^74+z160^73+z160^72+z160^71+z160^70+z160^67+z160^66+z160^65+z160^62+z160^59+z160^58+z160^57+z160^55+z160^54+z160^53+z160^52+z160^51+z160^49+z160^47+z160^44+z160^40+z160^35+z160^32+z160^30+z160^28+z160^27+z160^26+z160^24+z160^23+z160^21+z160^20+z160^18+z160^16+z160^11+z160^10+z160^8+z160^7+1) + // coefficients: ZZ/2[z160]/(z160^160+z160^159+z160^155+z160^154+z160^153+z160^152+z160^151+z160^149+z160^148+z160^147+z160^146+z160^145+z160^144+z160^143+z160^141+z160^139+z160^137+z160^131+z160^129+z160^128+z160^127+z160^126+z160^123+z160^122+z160^121+z160^117+z160^116+z160^115+z160^113+z160^111+z160^110+z160^108+z160^106+z160^102+z160^100+z160^99+z160^97+z160^96+z160^95+z160^94+z160^93+z160^92+z160^91+z160^87+z160^86+z160^82+z160^80+z160^79+z160^78+z160^74+z160^73+z160^72+z160^71+z160^70+z160^67+z160^66+z160^65+z160^62+z160^59+z160^58+z160^57+z160^55+z160^54+z160^53+z160^52+z160^51+z160^49+z160^47+z160^44+z160^40+z160^35+z160^32+z160^30+z160^28+z160^27+z160^26+z160^24+z160^23+z160^21+z160^20+z160^18+z160^16+z160^11+z160^10+z160^8+z160^7+1)... // number of vars : 2 // block 1 : ordering dp // : names a b @@ -248,7 +248,7 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL: sage: R = PolynomialRing(Zmod(2^32), ("a", "b"), implementation="singular"); print(sing_print(R)) polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/(2^32) + // coefficients: ZZ/(2^32)... // number of vars : 2 // block 1 : ordering dp // : names a b @@ -258,7 +258,7 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL: sage: R = PolynomialRing(Zmod(2^1000), ("a", "b"), implementation="singular"); print(sing_print(R)) polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/(bigint(2)^1000) + // coefficients: ZZ/(bigint(2)^1000)... // number of vars : 2 // block 1 : ordering dp // : names a b @@ -268,7 +268,7 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL: sage: R = PolynomialRing(Zmod(3^300), ("a", "b"), implementation="singular"); print(sing_print(R)) polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/(bigint(3)^300) + // coefficients: ZZ/(bigint(3)^300)... // number of vars : 2 // block 1 : ordering dp // : names a b @@ -278,7 +278,7 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL: sage: R = PolynomialRing(Zmod(15^20), ("a", "b"), implementation="singular"); print(sing_print(R)) polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/bigint(332525673007965087890625) + // coefficients: ZZ/bigint(332525673007965087890625)... // number of vars : 2 // block 1 : ordering dp // : names a b diff --git a/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx b/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx index adf3df1cf95..bab5935004b 100644 --- a/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx +++ b/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx @@ -619,8 +619,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: P._singular_() polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 3 + // coefficients: QQ... + // number of vars : 3 // block 1 : ordering dp // : names x y z // block 2 : ordering C @@ -1182,8 +1182,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: P. = QQ[] sage: P._singular_() polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 3 + // coefficients: QQ... + // number of vars : 3 // block 1 : ordering dp // : names x y z // block 2 : ordering C @@ -1198,8 +1198,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: P. = PolynomialRing(k, 3) # needs sage.rings.finite_rings sage: P._singular_() # needs sage.rings.finite_rings polynomial ring, over a field, global ordering - // coefficients: ZZ/3[a]/(a^3-a+1) - // number of vars : 3 + // coefficients: ZZ/3[a]/(a^3-a+1)... + // number of vars : 3 // block 1 : ordering dp // : names x y z // block 2 : ordering C @@ -1215,8 +1215,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: P. = QQ[] sage: P._singular_() polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 1 + // coefficients: QQ... + // number of vars : 1 // block 1 : ordering lp // : names x // block 2 : ordering C @@ -1257,8 +1257,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: P. = QQ[] sage: P._singular_init_() polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 3 + // coefficients: QQ... + // number of vars : 3 // block 1 : ordering dp // : names x y z // block 2 : ordering C @@ -1272,8 +1272,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: R. = PolynomialRing(NumberField(w^2 + 1,'s')) # needs sage.rings.number_field sage: singular(R) # needs sage.rings.number_field polynomial ring, over a field, global ordering - // coefficients: QQ[s]/(s^2+1) - // number of vars : 2 + // coefficients: QQ[s]/(s^2+1)... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C @@ -1281,8 +1281,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: R = PolynomialRing(GF(2**8,'a'),10,'x', order='invlex') # needs sage.rings.finite_rings sage: singular(R) # needs sage.rings.finite_rings polynomial ring, over a field, global ordering - // coefficients: ZZ/2[a]/(a^8+a^4+a^3+a^2+1) - // number of vars : 10 + // coefficients: ZZ/2[a]/(a^8+a^4+a^3+a^2+1)... + // number of vars : 10 // block 1 : ordering ip // : names x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 // block 2 : ordering C @@ -1290,8 +1290,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: R = PolynomialRing(GF(127),2,'x', order='invlex') sage: singular(R) # needs sage.rings.finite_rings polynomial ring, over a field, global ordering - // coefficients: ZZ/127 - // number of vars : 2 + // coefficients: ZZ/127... + // number of vars : 2 // block 1 : ordering ip // : names x0 x1 // block 2 : ordering C @@ -1299,8 +1299,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: R = PolynomialRing(QQ,2,'x', order='invlex') sage: singular(R) # needs sage.rings.function_field polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 2 + // coefficients: QQ... + // number of vars : 2 // block 1 : ordering ip // : names x0 x1 // block 2 : ordering C @@ -1308,8 +1308,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: R = PolynomialRing(QQ,2,'x', order='degneglex') sage: singular(R) # needs sage.rings.function_field polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 2 + // coefficients: QQ... + // number of vars : 2 // block 1 : ordering a // : names x0 x1 // : weights 1 1 @@ -1320,8 +1320,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: R = PolynomialRing(QQ,'x') sage: singular(R) # needs sage.rings.function_field polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 1 + // coefficients: QQ... + // number of vars : 1 // block 1 : ordering lp // : names x // block 2 : ordering C @@ -1329,8 +1329,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: R = PolynomialRing(GF(127),'x') sage: singular(R) # needs sage.rings.finite_rings polynomial ring, over a field, global ordering - // coefficients: ZZ/127 - // number of vars : 1 + // coefficients: ZZ/127... + // number of vars : 1 // block 1 : ordering lp // : names x // block 2 : ordering C @@ -1338,8 +1338,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: R = ZZ['x,y'] sage: singular(R) # needs sage.rings.function_field polynomial ring, over a domain, global ordering - // coefficients: ZZ - // number of vars : 2 + // coefficients: ZZ... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C @@ -1347,8 +1347,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: R = IntegerModRing(1024)['x,y'] sage: singular(R) # needs sage.rings.function_field polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/(2^10) - // number of vars : 2 + // coefficients: ZZ/(2^10)... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C @@ -1356,8 +1356,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: R = IntegerModRing(15)['x,y'] sage: singular(R) # needs sage.rings.function_field polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/...(15) - // number of vars : 2 + // coefficients: ZZ/(15)... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C @@ -1367,8 +1367,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base): sage: P. = QQ[] sage: P._singular_init_() polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 1 + // coefficients: QQ... + // number of vars : 1 // block 1 : ordering lp // : names x // block 2 : ordering C diff --git a/src/sage/rings/polynomial/pbori/pbori.pyx b/src/sage/rings/polynomial/pbori/pbori.pyx index 14a929c3238..404771a2c85 100644 --- a/src/sage/rings/polynomial/pbori/pbori.pyx +++ b/src/sage/rings/polynomial/pbori/pbori.pyx @@ -1425,8 +1425,8 @@ cdef class BooleanPolynomialRing(BooleanPolynomialRing_base): sage: B. = BooleanPolynomialRing(2) sage: B._singular_() # indirect doctest polynomial ring, over a field, global ordering - // coefficients: ZZ/2 - // number of vars : 2 + // coefficients: ZZ/2... + // number of vars : 2 // block 1 : ordering lp // : names x y // block 2 : ordering C diff --git a/src/sage/rings/polynomial/polynomial_quotient_ring.py b/src/sage/rings/polynomial/polynomial_quotient_ring.py index 115647adadf..627765cf8f0 100644 --- a/src/sage/rings/polynomial/polynomial_quotient_ring.py +++ b/src/sage/rings/polynomial/polynomial_quotient_ring.py @@ -749,8 +749,8 @@ def _singular_init_(self, S=None): sage: Q = P.quo([(x^2 + 1)]) sage: singular(Q) # indirect doctest # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 1 + // coefficients: QQ... + // number of vars : 1 // block 1 : ordering lp // : names xbar // block 2 : ordering C diff --git a/src/sage/rings/polynomial/polynomial_singular_interface.py b/src/sage/rings/polynomial/polynomial_singular_interface.py index 60d2dd74b52..10bbc6d6ec0 100644 --- a/src/sage/rings/polynomial/polynomial_singular_interface.py +++ b/src/sage/rings/polynomial/polynomial_singular_interface.py @@ -62,7 +62,7 @@ def _do_singular_init_(singular, base_ring, char, _vars, order): sage: from sage.rings.polynomial.polynomial_singular_interface import _do_singular_init_ sage: _do_singular_init_(singular, ZZ, 0, 'X', 'dp') # needs sage.libs.singular (polynomial ring, over a domain, global ordering - // coefficients: ZZ + // coefficients: ZZ... // number of vars : 1 // block 1 : ordering dp // : names X @@ -196,7 +196,7 @@ def _singular_(self, singular=None): sage: R. = PolynomialRing(CC) # needs sage.rings.real_mpfr sage: singular(R) # needs sage.libs.singular sage.rings.real_mpfr polynomial ring, over a field, global ordering - // coefficients: real[I](complex:15 digits, additional 0 digits)/(I^2+1) + // coefficients: real[I](complex:15 digits, additional 0 digits)/(I^2+1)... // number of vars : 2 // block 1 : ordering dp // : names x y @@ -205,7 +205,7 @@ def _singular_(self, singular=None): sage: R. = PolynomialRing(RealField(100)) # needs sage.rings.real_mpfr sage: singular(R) # needs sage.libs.singular sage.rings.real_mpfr polynomial ring, over a field, global ordering - // coefficients: Float() + // coefficients: Float()... // number of vars : 2 // block 1 : ordering dp // : names x y @@ -215,8 +215,8 @@ def _singular_(self, singular=None): sage: R. = PolynomialRing(NumberField(w^2 + 1, 's')) # needs sage.rings.number_field sage: singular(R) # needs sage.libs.singular sage.rings.number_field polynomial ring, over a field, global ordering - // coefficients: QQ[s]/(s^2+1) - // number of vars : 1 + // coefficients: QQ[s]/(s^2+1)... + // number of vars : 1 // block 1 : ordering lp // : names x // block 2 : ordering C @@ -224,8 +224,8 @@ def _singular_(self, singular=None): sage: R = PolynomialRing(GF(127), 'x', implementation='singular') # needs sage.libs.singular sage: singular(R) # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: ZZ/127 - // number of vars : 1 + // coefficients: ZZ/127... + // number of vars : 1 // block 1 : ordering dp // : names x // block 2 : ordering C @@ -233,8 +233,8 @@ def _singular_(self, singular=None): sage: R = PolynomialRing(QQ, 'x', implementation='singular') # needs sage.libs.singular sage: singular(R) # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 1 + // coefficients: QQ... + // number of vars : 1 // block 1 : ordering dp // : names x // block 2 : ordering C @@ -242,8 +242,8 @@ def _singular_(self, singular=None): sage: R = PolynomialRing(QQ,'x') sage: singular(R) # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 1 + // coefficients: QQ... + // number of vars : 1 // block 1 : ordering lp // : names x // block 2 : ordering C @@ -251,8 +251,8 @@ def _singular_(self, singular=None): sage: R = PolynomialRing(GF(127), 'x') sage: singular(R) # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: ZZ/127 - // number of vars : 1 + // coefficients: ZZ/127... + // number of vars : 1 // block 1 : ordering lp // : names x // block 2 : ordering C @@ -260,8 +260,8 @@ def _singular_(self, singular=None): sage: R = Frac(ZZ['a,b'])['x,y'] sage: singular(R) # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ(a, b) - // number of vars : 2 + // coefficients: QQ(a, b)... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C @@ -270,8 +270,8 @@ def _singular_(self, singular=None): sage: R = IntegerModRing(1024)['x,y'] sage: singular(R) # needs sage.libs.singular polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/(2^10) - // number of vars : 2 + // coefficients: ZZ/(2^10)... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C @@ -279,8 +279,8 @@ def _singular_(self, singular=None): sage: R = IntegerModRing(15)['x,y'] sage: singular(R) # needs sage.libs.singular polynomial ring, over a ring (with zero-divisors), global ordering - // coefficients: ZZ/...(15) - // number of vars : 2 + // coefficients: ZZ/(15)... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C @@ -288,8 +288,8 @@ def _singular_(self, singular=None): sage: R = ZZ['x,y'] sage: singular(R) # needs sage.libs.singular polynomial ring, over a domain, global ordering - // coefficients: ZZ - // number of vars : 2 + // coefficients: ZZ... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C @@ -297,7 +297,7 @@ def _singular_(self, singular=None): sage: R = ZZ['x'] sage: singular(R) # needs sage.libs.singular polynomial ring, over a domain, global ordering - // coefficients: ZZ + // coefficients: ZZ... // number of vars : 1 // block 1 : ordering lp // : names x @@ -310,8 +310,8 @@ def _singular_(self, singular=None): sage: S = K['y'] sage: singular(S) # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: ZZ/5(x) - // number of vars : 2 + // coefficients: ZZ/5(x)... + // number of vars : 2 // block 1 : ordering lp // : names a y // block 2 : ordering C @@ -353,8 +353,8 @@ def _singular_init_(self, singular=None): sage: PolynomialRing(QQ,'u_ba')._singular_init_() # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 1 + // coefficients: QQ... + // number of vars : 1 // block 1 : ordering lp // : names u_ba // block 2 : ordering C diff --git a/src/sage/rings/polynomial/term_order.py b/src/sage/rings/polynomial/term_order.py index a88568248ce..f8ddd0a9652 100644 --- a/src/sage/rings/polynomial/term_order.py +++ b/src/sage/rings/polynomial/term_order.py @@ -660,7 +660,7 @@ def __init__(self, name='lex', n=0, force=False): sage: R. = PolynomialRing(QQ, order=T) sage: R._singular_() # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ + // coefficients: QQ... // number of vars : 3 // block 1 : ordering dp // : names x y z @@ -676,7 +676,7 @@ def __init__(self, name='lex', n=0, force=False): False sage: S._singular_() # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ + // coefficients: QQ... // number of vars : 3 // block 1 : ordering C // block 2 : ordering dp @@ -1661,8 +1661,8 @@ def singular_str(self): '(lp(3),Dp(5),lp(2))' sage: P._singular_() # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: ZZ/127 - // number of vars : 10 + // coefficients: ZZ/127... + // number of vars : 10 // block 1 : ordering lp // : names x0 x1 x2 // block 2 : ordering Dp @@ -1687,8 +1687,8 @@ def singular_str(self): '(a(1:2),ls(2),a(1:2),ls(2))' sage: P._singular_() # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 4 + // coefficients: QQ... + // number of vars : 4 // block 1 : ordering a // : names x0 x1 // : weights 1 1 @@ -1709,7 +1709,7 @@ def singular_str(self): sage: P = PolynomialRing(QQ, 4, names='x', order=T) sage: P._singular_() # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ + // coefficients: QQ... // number of vars : 4 // block 1 : ordering C // block 2 : ordering a @@ -1727,7 +1727,7 @@ def singular_str(self): sage: P = PolynomialRing(QQ, 4, names='y', order=T) sage: P._singular_() # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ + // coefficients: QQ... // number of vars : 4 // block 1 : ordering c // block 2 : ordering a @@ -1745,7 +1745,7 @@ def singular_str(self): sage: P = PolynomialRing(QQ, 4, names='z', order=T) sage: P._singular_() # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ + // coefficients: QQ... // number of vars : 4 // block 1 : ordering a // : names z0 z1 @@ -2183,7 +2183,7 @@ def termorder_from_singular(S): sage: # needs sage.libs.singular sage: singular.ring(0, '(x,y,z,w)', '(C,dp(2),lp(2))') polynomial ring, over a field, global ordering - // coefficients: QQ + // coefficients: QQ... // number of vars : 4 // block 1 : ordering C // block 2 : ordering dp @@ -2201,7 +2201,7 @@ def termorder_from_singular(S): sage: # needs sage.libs.singular sage: singular.ring(0, '(x,y,z,w)', '(c,dp(2),lp(2))') polynomial ring, over a field, global ordering - // coefficients: QQ + // coefficients: QQ... // number of vars : 4 // block 1 : ordering c // block 2 : ordering dp diff --git a/src/sage/rings/quotient_ring.py b/src/sage/rings/quotient_ring.py index 1043333a63e..45f8147cde9 100644 --- a/src/sage/rings/quotient_ring.py +++ b/src/sage/rings/quotient_ring.py @@ -1268,8 +1268,8 @@ def _singular_(self, singular=None): sage: S = R.quotient_ring(x^2 + y^2) sage: S._singular_() # needs sage.libs.singular polynomial ring, over a field, global ordering - // coefficients: QQ - // number of vars : 2 + // coefficients: QQ... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C diff --git a/src/sage/rings/quotient_ring_element.py b/src/sage/rings/quotient_ring_element.py index 6699ae9f74b..9f05c54f21c 100644 --- a/src/sage/rings/quotient_ring_element.py +++ b/src/sage/rings/quotient_ring_element.py @@ -813,8 +813,8 @@ def _singular_(self, singular=None): sage: Q = P.quo(I) sage: Q._singular_() polynomial ring, over a field, global ordering - // coefficients: ZZ/2 - // number of vars : 2 + // coefficients: ZZ/2... + // number of vars : 2 // block 1 : ordering dp // : names x y // block 2 : ordering C