-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_target_detector.py
254 lines (199 loc) · 9.69 KB
/
train_target_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import numpy as np
import tqdm
from scipy.spatial.distance import cdist
import wandb
import torch
import torch.nn as nn
import torch.optim as optim
import evaluate_detector
import loss_adapt
import copy
def eval_dec(detector, loader, model):
## Evaluate Detector on Cifar
detector.eval()
device = next(model.parameters()).device
correct, total = 0,0
for data ,_, labels, idxs in tqdm.tqdm(loader, leave=False):
data, labels = data.to(device), labels.to(device)
logits = model(data)
logits = logits.detach()
logits = logits.view((data.size(0), -1))
output = detector(logits.float())
_, pred = output.max(1)
correct += (pred == labels).float().sum(0).item()
total += data.size(0)
print(f"Accuracy : {(correct/total)*100:.2f}")
return correct, total
def op_copy(optimizer):
for param_group in optimizer.param_groups:
param_group['lr0'] = param_group['lr']
return optimizer
def lr_scheduler(optimizer, iter_num, max_iter, gamma=10, power=0.75):
decay = (1 + gamma * iter_num / max_iter) ** (-power)
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr0'] * decay
param_group['weight_decay'] = 1e-3
param_group['momentum'] = 0.9
param_group['nesterov'] = True
return optimizer
def adapt_detector(detector, loader, args , model, interval_iter=3000):
epochs = args.epochs
device = next(model.parameters()).device
best_acc = -np.Inf
model.eval()
detector.train()
max_iter = epochs * len(loader)
interval_iter = min ( interval_iter // loader.batch_size , len(loader) )
print("with chekcpoint interval_iter", interval_iter)
iter_num = 0
## Freeze Params of last layer
for param in detector.fc3.parameters():
param.requires_grad = False
## Training on for other two layers
param_group = []
#parameters of linear layer
if args.detector_base_name == "scatternet":
for k, v in detector.linear.named_parameters():
param_group += [{'params': v, 'lr': args.lr}]
for k, v in detector.fc1.named_parameters():
param_group += [{'params': v, 'lr': args.lr}]
for k, v in detector.fc2.named_parameters():
param_group += [{'params': v, 'lr': args.lr}]
# for k, v in detector.fc3.named_parameters():
# param_group += [{'params': v, 'lr': args.lr}]
for k, v in detector.batchnorm.named_parameters():
param_group += [{'params': v, 'lr': args.lr}]
optimizer = optim.SGD(param_group)
if args.use_label_smoothing:
print("using label smoothing")
criterion = loss_adapt.CrossEntropyLabelSmooth(2).to(device)
else:
criterion = nn.CrossEntropyLoss().to(device)
for e in range(epochs):
print("starting epoch " , e)
for data, _, labels, idxs in tqdm.tqdm(loader, leave=False):
optimizer.zero_grad()
data, labels = data.to(device), labels.to(device)
logits = model(data)
logits = logits.detach()
logits = logits.view((data.size(0), -1))
if iter_num % interval_iter == 0 and args.cls_par > 0:
detector.eval()
mem_label , _ = obtain_label(loader, detector,model)
mem_label = torch.from_numpy(mem_label).to(device)
detector.train()
iter_num += 1
# lr_scheduler(optimizer, iter_num=iter_num, max_iter=max_iter)
outputs_test = detector(logits.float())
features_test = detector.features_test
if args.cls_par > 0:
pred = mem_label[idxs]
classifier_loss = args.cls_par * criterion(outputs_test, pred)
else:
classifier_loss = torch.tensor(0.0).to(device)
## Check sign of ENTROPY LOSS
if args.ent:
softmax_out = nn.Softmax(dim=1)(outputs_test)
entropy_loss = torch.mean(loss_adapt.Entropy(softmax_out))
if args.gent:
msoftmax = softmax_out.mean(dim=0)
div_loss = torch.sum(-msoftmax * torch.log(msoftmax + 1e-5))
im_loss = entropy_loss - div_loss
im_loss = im_loss * args.ent_par
else:
im_loss = torch.tensor(0.0).to(device)
total_loss = classifier_loss + im_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
if iter_num % interval_iter == 0:
detector.eval()
#mem_label, _ = obtain_label(loader, detector,model)
"""pseudo_acc, clean_acc, adv_acc = evaluate_detector.evaluate(loader, model, detector=detector, pseudo_labels=mem_label)
#print(f'Iteration : {iter_num} \t|\t pseudo Acc : {pseudo_acc} \t|\t pseudo clean Acc : {clean_acc} \t|\t pseudo adv Acc: {adv_acc}')
if args.use_wandb:
wandb.log({"target_pseudo_acc": pseudo_acc, "target_pseudo_clean_acc": clean_acc, "target_pseudo_adv_acc": adv_acc})
"""
acc, clean_acc, adv_acc = evaluate_detector.evaluate(loader, model, detector=detector, pseudo_labels=None)
if args.use_wandb:
wandb.log({"target_clean_acc": clean_acc, "target_adv_acc": adv_acc})
#wandb log pseudo acc, clean acc and adv acc
"""print(f'IM-Loss : {im_loss}')
print(f'Classifier-Loss : {classifier_loss}')
print(f'total_loss : {total_loss}')"""
print(f'Iteration : {iter_num} \t|\t Acc : {acc} \t|\t clean Acc : {clean_acc} \t|\t adv Acc: {adv_acc}')
if args.use_wandb:
wandb.log({"target_im_loss":im_loss, "target_classifier_loss":classifier_loss, "target_acc": acc})
wandb.log({"target_ent_loss": entropy_loss , "target_div_loss": div_loss, "target_total_loss": total_loss})
# since we are assuming data free setup. we have to use pseudo accuracy
if acc >= best_acc:
best_acc = acc
#best_loss= total_loss
best_iter = iter_num
best_model = copy.deepcopy(detector)
torch.cuda.empty_cache()
if args.issave:
ckpt = {'detector_state_dict':detector.state_dict(),
'acc': best_acc,
'iter_num': best_iter}
torch.save(ckpt, args.save_path)
#creat a ensemble of detectors based on the total loss. ensemble should contain 5 detectors with the least loss
"""if len(ensemble) < 5:
ensemble.append((total_loss, copy.deepcopy(detector)))
else:
ensemble.sort(key=lambda x: x[0])
if total_loss < ensemble[-1][0]:
ensemble[-1] = (total_loss, copy.deepcopy(detector))"""
detector.train()
#ensemble.sort(key=lambda x: x[0])
#ensemble = [x[1] for x in ensemble]
# save the ensemble of detectors
#torch.save([x.state_dict() for x in ensemble], args.save_path + "_ensemble")
return best_model # ensemle is list of best models according to the total loss, best_model is actual best model
def obtain_label(loader, detector, model):
start_test = True
device = next(model.parameters()).device
model.eval()
with torch.no_grad():
for data, _, labels, idxs in loader:
data , labels = data.to(device) , labels.to(device)
logits = model(data)
logits = logits.detach()
data = data.cpu()
labels = labels.cpu()
logits = logits.view((data.size(0), -1))
outputs = detector(logits.float())
logits = logits.cpu()
feas = detector.features_test
if start_test:
all_fea = feas.float().cpu()
all_output = outputs.float().cpu()
all_label = labels.float()
start_test = False
else:
all_fea = torch.cat((all_fea, feas.float().cpu()), 0)
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
all_output = nn.Softmax(dim=1)(all_output)
_, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
all_fea = torch.cat((all_fea, torch.ones(all_fea.size(0), 1)), 1)
all_fea = (all_fea.t() / torch.norm(all_fea, p=2, dim=1)).t()
all_fea = all_fea.float().cpu().numpy()
K = all_output.size(1)
aff = all_output.float().cpu().numpy()
initc = aff.transpose().dot(all_fea)
initc = initc / (1e-8 + aff.sum(axis=0)[:,None])
dd = cdist(all_fea, initc, 'cosine')
pred_label = dd.argmin(axis=1)
acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
for round in range(1):
aff = np.eye(K)[pred_label]
initc = aff.transpose().dot(all_fea)
initc = initc / (1e-8 + aff.sum(axis=0)[:,None])
dd = cdist(all_fea, initc, 'cosine')
pred_label = dd.argmin(axis=1)
acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
log_str = 'Accuracy = {:.2f}% -> {:.2f}%'.format(accuracy*100, acc*100)
print(log_str)
return pred_label.astype('int') , acc