-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
337 lines (304 loc) · 11.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
<script src="http://www.google.com/jsapi" type="text/javascript"></script>
<script type="text/javascript">google.load("jquery", "1.3.2");</script>
<style type="text/css">
body {
font-family: "HelveticaNeue-Light", "Helvetica Neue Light", "Helvetica Neue", Helvetica, Arial, "Lucida Grande", sans-serif;
font-weight:300;
font-size:18px;
margin-left: auto;
margin-right: auto;
width: 1100px;
}
h1 {
font-size:32px;
font-weight:300;
}
.disclaimerbox {
background-color: #eee;
border: 1px solid #eeeeee;
border-radius: 10px ;
-moz-border-radius: 10px ;
-webkit-border-radius: 10px ;
padding: 20px;
}
video.header-vid {
height: 140px;
border: 1px solid black;
border-radius: 10px ;
-moz-border-radius: 10px ;
-webkit-border-radius: 10px ;
}
img.header-img {
height: 200px;
border: 1px solid black;
border-radius: 10px ;
-moz-border-radius: 10px ;
-webkit-border-radius: 10px ;
}
img.rounded {
border: 1px solid #eeeeee;
border-radius: 10px ;
-moz-border-radius: 10px ;
-webkit-border-radius: 10px ;
}
a:link,a:visited
{
color: #1367a7;
text-decoration: none;
}
a:hover {
color: #208799;
}
td.dl-link {
height: 160px;
text-align: center;
font-size: 22px;
}
.layered-paper-big { /* modified from: http://css-tricks.com/snippets/css/layered-paper/ */
box-shadow:
0px 0px 1px 1px rgba(0,0,0,0.35), /* The top layer shadow */
5px 5px 0 0px #fff, /* The second layer */
5px 5px 1px 1px rgba(0,0,0,0.35), /* The second layer shadow */
10px 10px 0 0px #fff, /* The third layer */
10px 10px 1px 1px rgba(0,0,0,0.35), /* The third layer shadow */
15px 15px 0 0px #fff, /* The fourth layer */
15px 15px 1px 1px rgba(0,0,0,0.35), /* The fourth layer shadow */
20px 20px 0 0px #fff, /* The fifth layer */
20px 20px 1px 1px rgba(0,0,0,0.35), /* The fifth layer shadow */
25px 25px 0 0px #fff, /* The fifth layer */
25px 25px 1px 1px rgba(0,0,0,0.35); /* The fifth layer shadow */
margin-left: 10px;
margin-right: 45px;
}
.paper-big { /* modified from: http://css-tricks.com/snippets/css/layered-paper/ */
box-shadow:
0px 0px 1px 1px rgba(0,0,0,0.35); /* The top layer shadow */
margin-left: 10px;
margin-right: 45px;
}
.layered-paper { /* modified from: http://css-tricks.com/snippets/css/layered-paper/ */
box-shadow:
0px 0px 1px 1px rgba(0,0,0,0.35), /* The top layer shadow */
5px 5px 0 0px #fff, /* The second layer */
5px 5px 1px 1px rgba(0,0,0,0.35), /* The second layer shadow */
10px 10px 0 0px #fff, /* The third layer */
10px 10px 1px 1px rgba(0,0,0,0.35); /* The third layer shadow */
margin-top: 5px;
margin-left: 10px;
margin-right: 30px;
margin-bottom: 5px;
}
.vert-cent {
position: relative;
top: 50%;
transform: translateY(-50%);
}
hr
{
border: 0;
height: 1px;
background-image: linear-gradient(to right, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0.75), rgba(0, 0, 0, 0));
}
</style>
<html>
<head>
<title>Query-guided Attention in Vision Transformers for Localizing Objects Using a Single Sketch</title>
<meta property="og:image" content="teaser3"/> <!-- Facebook automatically scrapes this. Go to https://developers.facebook.com/tools/debug/ if you update and want to force Facebook to rescrape. -->
<meta property="og:title" content="Creative and Descriptive Paper Title." />
<meta property="og:description" content="Paper description." />
<!-- Get from Google Analytics -->
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src=""></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-75863369-6');
</script>
</head>
<body>
<br>
<center>
<span style="font-size:36px">Query-guided Attention in Vision Transformers for Localizing Objects Using a Single Sketch</span>
<table align=center width=600px>
<table align=center width=600px>
<tr>
<td align=center width=100px>
<center>
<span style="font-size:24px"><a href="https://www.linkedin.com/in/aditay-tripathi-930889122">Aditay Tripathi</a></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:24px"><a href="https://anandmishra22.github.io/">Anand Mishra</a></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:24px"><a href="https://cds.iisc.ac.in/people/faculty/name/anirban-chakraborty/#:~:text=Anirban%20Chakraborty%20Assistant%20Professor%2C%20Pratiksha,anirban%40iisc.ac.in">Anirban Chakraborty</a></span>
</center>
</td>
</tr>
</table>
<table align=center width=250px>
<tr>
<td align=center width=120px>
<center>
<span style="font-size:24px"><a href='https://arxiv.org/pdf/2303.08784.pdf'>[Paper]</a></span>
</center>
</td>
<td align=center width=120px>
<center>
<span style="font-size:24px"><a href='https://github.com/vcl-iisc/locformer-SGOL.git'>[GitHub]</a></span><br>
</center>
</td>
</tr>
</table>
</table>
</center>
<center>
<table align=center width=850px>
<tr>
<td width=260px>
<center>
<img class="round" style="width:700px" src="./resources/teaser3.png"/>
</center>
</td>
</tr>
<!-- <tr>
<td>
Our goal: Grounding scene graph on image.} Given a scene graph and an image, we ground (or localize) objects and, thereby, indirectly visual relationships as well jointly on the image.
</td>
</tr> -->
</table>
<table align=center width=850px>
<tr>
<td>
<b>Goal:</b>Consider a scenario where users wish to localize all the instances of the object <i>broccoli</i> on a set of natural images, and (i) images of <i>broccoli</i> are never seen during training, (ii) even at the inference time users do not have natural image of <i>broccoli</i> that can be used as a query, and (iii) the category name (``broccoli") is also unknown to the user. In such a situation, the user chooses to draw a sketch of \emph{broccoli} by hand to localize all instances of it on the natural images. This is the <b>sketch-guided object localization</b> problem. This work significantly improves the performance on this challenging task.
</td>
</tr>
</table>
</center>
<hr>
<table align=center width=850px>
<center><h1>Abstract</h1></center>
<tr>
<td>
In this study, we explore sketch-based object localization on natural images. Given a crude hand-drawn object sketch, the task is to locate all instances of that object in the target image. This problem proves difficult due to the abstract nature of hand-drawn sketches, variations in the style and quality of sketches, and the large domain gap between the sketches and the natural images. Existing solutions address this using attention-based frameworks to merge query information into image features. Yet, these methods often integrate query features after independently learning image features, causing inadequate alignment and as a result incorrect localization. In contrast, we propose a novel sketch-guided vision transformer encoder that uses cross attention after each block of the transformer-based image encoder to learn query-conditioned image features, lead ing to stronger alignment with the query sketch. Further, at the decoder’s output, object and sketch features are re fined better to align the representation of objects with the sketch query, thereby improving localization. The proposed model also generalizes to the object categories not seen during training, as the target image features learned by the proposed model are query-aware. Our framework can utilize multiple sketch queries via a trainable novel sketch fusion strategy. The model is evaluated on the images fromthe public benchmark, MS-COCO, using the sketch queriesfrom QuickDraw! and Sketchy datasets. Compared with existing localization methods, the proposed approach gives a 6.6% and 8.0% improvement in mAP for seen objects usingsketch queries from QuickDraw! and Sketchy datasets, re-spectively, and a 12.2% improvement in AP@50 for large objects that are ‘unseen’ during training.
</td>
</tr>
</table>
<table align=center width=850px>
<center><h1>Model</h1></center>
<tr>
<td>
<center>
<img class = "round" style="width:700px" src="./resources/method2.jpg"/>
</center>
</td>
</tr>
</table>
<br>
<table align=center width=850px>
<tr>
<td>
The proposed sketch-guided object localization model contains two primary components: (a) sketch-guided vision transformer encoder (Sec 3.1.1) and (b) object and sketch refinement (Sec. 3.1.2). The sketch-guided transformer encoder takes the image at the input and generates sketch-conditioned features by fusing the sketch features into the target image after each block of the image encoder using \textbf{cross-attention}. After getting object-level features at the output of the <b>transformer decoder</b> , the object features and the query sketch features are further refined to bring the features of the relevant object closer to the query sketch leading to better localization score.
</td>
</tr>
</table>
<br>
<!-- <hr> -->
<!-- <center><h1>Talk</h1></center>
<p align="center">
<iframe width="660" height="395" src="https://www.youtube.com/embed/dQw4w9WgXcQ" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen align="center"></iframe>
</p>
<table align=center width=800px>
<br>
<tr>
<center>
<span style="font-size:28px"><a href=''>[Slides]</a>
</span>
</center>
</tr>
</table> -->
<hr>
<center><h1>Code</h1></center>
<table align=center width=420px>
<center>
<tr>
<td>
</td>
</tr>
</center>
</table>
<!-- <table align=center width=400px>
<tr>
<td align=center width=400px>
<center>
<td><img class="round" style="width:450px" src="./resources/model_fig.png"/></td>
</center>
</td>
</tr>
</table> -->
<!-- <table align=center width=850px>
<center>
<tr>
<td>
Short description if wanted
</td>
</tr>
</center>
</table> -->
<table align=center width=800px>
<br>
<tr><center>
<span style="font-size:28px"> <a href='https://github.com/vcl-iisc/locformer-SGOL.git'>[GitHub]</a>
</center>
</span>
</table>
<br>
<hr>
<table align=center width=450px>
<center><h1>Paper and Supplementary Material</h1></center>
<tr>
<td><a href=""><img class="layered-paper-big" style="height:175px" src="./resources/paper2.png"/></a></td>
<td><span style="font-size:14pt">A. Tripathi, A. Mishra, A. Chakraborty.<br>
<b>Grounding Scene Graphs on Natural Images via Visio-Lingual Message Passing</b><br>
In WACV, 2023.<br>
(hosted on <a href="https://arxiv.org/pdf/2303.08784.pdf">ArXiv</a>)<br>
<!-- (<a href="./resources/camera-ready.pdf">camera ready</a>)<br> -->
<span style="font-size:4pt"><a href=""><br></a>
</span>
</td>
</tr>
</table>
<br>
<table align=center width=600px>
<tr>
<td><span style="font-size:14pt"><center>
<a href="./resources/bibtex.txt">[Bibtex]</a>
</center></td>
</tr>
</table>
<hr>
<br>
<!-- <table align=center width=850px>
<tr>
<td>
This was a template originally made for <a href="http://richzhang.github.io/colorization/">Colorful Image Colorization</a>. The code can be found in this <a href="https://github.com/richzhang/webpage-template">repository</a>.
</td>
</tr>
</table> -->
<table align=center width=900px>
<tr>
<td width=400px>
<left>
<!-- <center><h1>Acknowledgements</h1></center> -->
This template was originally made by <a href="http://web.mit.edu/phillipi/">Phillip Isola</a> and <a href="http://richzhang.github.io/">Richard Zhang</a> for a <a href="http://richzhang.github.io/colorization/">colorful</a> ECCV project; the code can be found <a href="https://github.com/richzhang/webpage-template">here</a>.
</left>
</td>
</tr>
</table>
<br>
</body>
</html>