Skip to content

Latest commit

 

History

History
42 lines (34 loc) · 1.52 KB

README.md

File metadata and controls

42 lines (34 loc) · 1.52 KB

Temporal Enhanced Inductive Graph Knowledge Tracing

IGKT-GAT Applied Intelligence 2023

@article{han2023temporal,
  title={Temporal enhanced inductive graph knowledge tracing},
  author={Han, Donghee and Kim, Daehee and Kim, Minsu and Han, Keejun and Yi, Mun Yong},
  journal={Applied Intelligence},
  pages={1--18},
  year={2023},
  publisher={Springer}
}

Datasets


Download datasets

  1. make up : build docker image and start docker container
  2. python3 download_datasets.py : download datasets

Docker Container

  • Docker container use igkt project directory as volume
  • File change will be apply directly to file in docker container

Preprocessing

  1. make up : build docker image and start docker container
  2. python3 src/pre_process.py : start ednet data preprocessing in docker container
  3. python3 src/pre_process_assist.py : start assist data preprocessing in docker container
  4. python3 src/item_preprocessing.py : start ednet item data preprocessing in docker container
  5. python3 src/item_preprocessing_assist.py : start assist item data preprocessing in docker container

Train

  1. make up : build docker image and start docker container
  2. check train_config/train_list.ymal file (default: assist2017 with igkt_ts and igkt_gat)
  3. python3 src/train.py : start train in docker container